How should I find the equilibrium points and the general equation?

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Equilibrium
Math100
Messages
813
Reaction score
229
Homework Statement
Find the equilibrium points and the general equation for the phase paths of ## \ddot{x}+cos(x)=0 ##. Obtain the equation of the phase path joining two adjacent saddles.
Relevant Equations
For the general equation ## \ddot{x}=f(x, \dot{x}) ##, equilibrium points lie on the ## x ## axis, and are given by all solutions of ## f(x, 0)=0 ##, and the phase paths in the plane ## (x, y) (y=\dot{x}) ## are given by all solutions of the first-order equation ## \frac{dy}{dx}=\frac{f(x, y)}{y} ##.
Consider the differential equation ## \ddot{x}+cos(x)=0 ##.
Note that ## \ddot{x}=f(x, \dot{x}) ##, so we have ## f(x, y)=-cos(x) ##.
Then ## f(x, 0)=-cos(x)=0 ##.
This gives ## x=n\pi-\frac{\pi}{2} ## for some ## n\in\mathbb{Z} ##.
Since the differential equation for the phase paths is given by ## \frac{dy}{dx}=-\frac{cos(x)}{y} ##,
it follows that ## y dy=-cos(x)dx\implies \int y dy=-\int cos(x)dx\implies \frac{y^2}{2}=-sin(x)+C ##.
Thus, ## y^2=-2sin(x)+C\implies y=\pm\sqrt{C-2sin(x)} ## where ## C ## is an arbitrary constant.

Above is my work for this problem. However, I've only found the general equation/solution for the phase paths of ## \ddot{x}+cos(x)=0 ## but how should I find the equilibrium points based on the equation I've found above in my work ## x=n\pi-\frac{\pi}{2} ## for some ## n\in\mathbb{Z} ##? Also, how should I obtain the equation of the phase path joining two adjacent saddles from here?
 
Physics news on Phys.org
The fixed points are at (\dot x, \ddot x) = (0,0). You have correctly found these to be at (x, \dot x) = ((n + \frac12)\pi,0), n \in \mathbb{Z}. But which are saddles? You need to find the eigenvalues of the Jacobian at these fixed points to determine that.

Then you can find the value of C at a saddle point, which will give you the equation of the phase path(s) connecting adjacent saddles.
 
pasmith said:
The fixed points are at (\dot x, \ddot x) = (0,0). You have correctly found these to be at (x, \dot x) = ((n + \frac12)\pi,0), n \in \mathbb{Z}. But which are saddles? You need to find the eigenvalues of the Jacobian at these fixed points to determine that.

Then you can find the value of C at a saddle point, which will give you the equation of the phase path(s) connecting adjacent saddles.
Why is it ## (x, \dot{x})=((n+\frac{1}{2})\pi, 0) ## for some ## n\in\mathbb{Z} ## instead of ## (x, \dot{x})=((n-\frac{1}{2})\pi, 0) ## for some ## n\in\mathbb{Z} ##? Also, what's the Jacobian in this problem and how to find the eigenvalues of this Jacobian in order to find those saddles?
 
Math100 said:
Why is it ## (x, \dot{x})=((n+\frac{1}{2})\pi, 0) ## for some ## n\in\mathbb{Z} ## instead of ## (x, \dot{x})=((n-\frac{1}{2})\pi, 0) ## for some ## n\in\mathbb{Z} ##?

Do you think these are different?

Also, what's the Jacobian in this problem and how to find the eigenvalues of this Jacobian in order to find those saddles?

If you don't recall what the jacobian of a system of ODEs is or how to find it, you need to reread your notes.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top