A How the mass term of the Hamiltonian for a scalar fields transform?

PRB147
Messages
122
Reaction score
0
TL;DR Summary
The mass term under Lorentz transformation
The Hamiltonian for a scalar field contains the term
$$\int d^3x m^2 \phi(x) \phi(x)$$, does it changs to the following form?
$$\int d^3x' {m'}^2 \phi'(x') \phi'(x')=\int d^3x' \gamma^2{m}^2 \phi(x) \phi(x)$$? As it is well known for a scalar field: $$\phi'(x')=\phi(x)$$ .
 
Physics news on Phys.org
The mass is Lorentz invariant AFAIK.
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
Back
Top