A How the mass term of the Hamiltonian for a scalar fields transform?

PRB147
Messages
122
Reaction score
0
TL;DR Summary
The mass term under Lorentz transformation
The Hamiltonian for a scalar field contains the term
$$\int d^3x m^2 \phi(x) \phi(x)$$, does it changs to the following form?
$$\int d^3x' {m'}^2 \phi'(x') \phi'(x')=\int d^3x' \gamma^2{m}^2 \phi(x) \phi(x)$$? As it is well known for a scalar field: $$\phi'(x')=\phi(x)$$ .
 
Physics news on Phys.org
The mass is Lorentz invariant AFAIK.
 
Thread 'Why is there such a difference between the total cross-section data? (simulation vs. experiment)'
Well, I'm simulating a neutron-proton scattering phase shift. The equation that I solve numerically is the Phase function method and is $$ \frac{d}{dr}[\delta_{i+1}] = \frac{2\mu}{\hbar^2}\frac{V(r)}{k^2}\sin(kr + \delta_i)$$ ##\delta_i## is the phase shift for triplet and singlet state, ##\mu## is the reduced mass for neutron-proton, ##k=\sqrt{2\mu E_{cm}/\hbar^2}## is the wave number and ##V(r)## is the potential of interaction like Yukawa, Wood-Saxon, Square well potential, etc. I first...
Back
Top