MHB How to calculate binomial (n choose k) coefficients when exponent is negative?

AI Thread Summary
Calculating binomial coefficients for negative integer exponents can be addressed using the binomial series expansion rather than traditional factorial methods. The series for (1 + x)^r allows for the computation of coefficients even when r is negative, as shown in the formulas provided. Specifically, the expansion for (1 + x)^{-r} includes terms that can be derived without encountering undefined factorials. This approach enables the determination of coefficients for expressions like (a + b)^{-2}. Understanding these series is essential for working with negative exponents in binomial expansions.
tommymato
Messages
2
Reaction score
0
I'm using Pascal's (n choose k) method for calculating the coefficients of the terms of a binomial expansion. However, if the exponent is a negative integer, how can one use this method, seeing as factorials for negative integers are undefined.

For example, how could one determine the coefficients of (a + b) ^ -2
 
Mathematics news on Phys.org
tommymato said:
I'm using Pascal's (n choose k) method for calculating the coefficients of the terms of a binomial expansion. However, if the exponent is a negative integer, how can one use this method, seeing as factorials for negative integers are undefined.

For example, how could one determine the coefficients of (a + b) ^ -2

In the general case the binomial series is that which has here...

Binomial Series -- from Wolfram MathWorld

... in detail...

$\displaystyle (1 + x)^{r} = 1 + r\ x + \frac{1}{2}\ r\ (r-1) \ x^{2} + \frac{1}{6}\ r\ (r-1)\ (r-2)\ x^{3} + ... \ (1)$

$\displaystyle (1 + x)^{- r} = 1 + r\ x + \frac{1}{2}\ r\ (r+1) \ x^{2} + \frac{1}{6}\ r\ (r+1)\ (r+2)\ x^{3} + ... \ (2)$

Kind regards

$\chi$ $\sigma$
 
Last edited:
chisigma said:
In the general case the binomial series is that which has here...

Binomial Series -- from Wolfram MathWorld

... in detail...

$\displaystyle (1 + x)^{r} = 1 + r\ x + \frac{r}{2}\ r\ (r-1) \ x^{2} + \frac{r}{6}\ r\ (r-1)\ (r-2)\ x^{3} + ... \ (1)$

$\displaystyle (1 + x)^{- r} = 1 + r\ x + \frac{r}{2}\ r\ (r+1) \ x^{2} + \frac{r}{6}\ r\ (r+1)\ (r+2)\ x^{3} + ... \ (2)$

Kind regards

$\chi$ $\sigma$

... of course for x = -1 and r = 0 using the (1) or (2) is $\displaystyle (1-1)^{0} = 0^{0} = 1$... an happy 2015 and many more years of happiness to those who still believe that $0^{0}$ is an 'indeterminate form '(Happy)...

Kind regards

$\chi$ $\sigma$
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top