MHB How to calculate binomial (n choose k) coefficients when exponent is negative?

Click For Summary
Calculating binomial coefficients for negative integer exponents can be addressed using the binomial series expansion rather than traditional factorial methods. The series for (1 + x)^r allows for the computation of coefficients even when r is negative, as shown in the formulas provided. Specifically, the expansion for (1 + x)^{-r} includes terms that can be derived without encountering undefined factorials. This approach enables the determination of coefficients for expressions like (a + b)^{-2}. Understanding these series is essential for working with negative exponents in binomial expansions.
tommymato
Messages
2
Reaction score
0
I'm using Pascal's (n choose k) method for calculating the coefficients of the terms of a binomial expansion. However, if the exponent is a negative integer, how can one use this method, seeing as factorials for negative integers are undefined.

For example, how could one determine the coefficients of (a + b) ^ -2
 
Mathematics news on Phys.org
tommymato said:
I'm using Pascal's (n choose k) method for calculating the coefficients of the terms of a binomial expansion. However, if the exponent is a negative integer, how can one use this method, seeing as factorials for negative integers are undefined.

For example, how could one determine the coefficients of (a + b) ^ -2

In the general case the binomial series is that which has here...

Binomial Series -- from Wolfram MathWorld

... in detail...

$\displaystyle (1 + x)^{r} = 1 + r\ x + \frac{1}{2}\ r\ (r-1) \ x^{2} + \frac{1}{6}\ r\ (r-1)\ (r-2)\ x^{3} + ... \ (1)$

$\displaystyle (1 + x)^{- r} = 1 + r\ x + \frac{1}{2}\ r\ (r+1) \ x^{2} + \frac{1}{6}\ r\ (r+1)\ (r+2)\ x^{3} + ... \ (2)$

Kind regards

$\chi$ $\sigma$
 
Last edited:
chisigma said:
In the general case the binomial series is that which has here...

Binomial Series -- from Wolfram MathWorld

... in detail...

$\displaystyle (1 + x)^{r} = 1 + r\ x + \frac{r}{2}\ r\ (r-1) \ x^{2} + \frac{r}{6}\ r\ (r-1)\ (r-2)\ x^{3} + ... \ (1)$

$\displaystyle (1 + x)^{- r} = 1 + r\ x + \frac{r}{2}\ r\ (r+1) \ x^{2} + \frac{r}{6}\ r\ (r+1)\ (r+2)\ x^{3} + ... \ (2)$

Kind regards

$\chi$ $\sigma$

... of course for x = -1 and r = 0 using the (1) or (2) is $\displaystyle (1-1)^{0} = 0^{0} = 1$... an happy 2015 and many more years of happiness to those who still believe that $0^{0}$ is an 'indeterminate form '(Happy)...

Kind regards

$\chi$ $\sigma$
 
Last edited:
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 25 ·
Replies
25
Views
7K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
6
Views
4K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
9K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
17
Views
4K