MHB How to calculate binomial (n choose k) coefficients when exponent is negative?

AI Thread Summary
Calculating binomial coefficients for negative integer exponents can be addressed using the binomial series expansion rather than traditional factorial methods. The series for (1 + x)^r allows for the computation of coefficients even when r is negative, as shown in the formulas provided. Specifically, the expansion for (1 + x)^{-r} includes terms that can be derived without encountering undefined factorials. This approach enables the determination of coefficients for expressions like (a + b)^{-2}. Understanding these series is essential for working with negative exponents in binomial expansions.
tommymato
Messages
2
Reaction score
0
I'm using Pascal's (n choose k) method for calculating the coefficients of the terms of a binomial expansion. However, if the exponent is a negative integer, how can one use this method, seeing as factorials for negative integers are undefined.

For example, how could one determine the coefficients of (a + b) ^ -2
 
Mathematics news on Phys.org
tommymato said:
I'm using Pascal's (n choose k) method for calculating the coefficients of the terms of a binomial expansion. However, if the exponent is a negative integer, how can one use this method, seeing as factorials for negative integers are undefined.

For example, how could one determine the coefficients of (a + b) ^ -2

In the general case the binomial series is that which has here...

Binomial Series -- from Wolfram MathWorld

... in detail...

$\displaystyle (1 + x)^{r} = 1 + r\ x + \frac{1}{2}\ r\ (r-1) \ x^{2} + \frac{1}{6}\ r\ (r-1)\ (r-2)\ x^{3} + ... \ (1)$

$\displaystyle (1 + x)^{- r} = 1 + r\ x + \frac{1}{2}\ r\ (r+1) \ x^{2} + \frac{1}{6}\ r\ (r+1)\ (r+2)\ x^{3} + ... \ (2)$

Kind regards

$\chi$ $\sigma$
 
Last edited:
chisigma said:
In the general case the binomial series is that which has here...

Binomial Series -- from Wolfram MathWorld

... in detail...

$\displaystyle (1 + x)^{r} = 1 + r\ x + \frac{r}{2}\ r\ (r-1) \ x^{2} + \frac{r}{6}\ r\ (r-1)\ (r-2)\ x^{3} + ... \ (1)$

$\displaystyle (1 + x)^{- r} = 1 + r\ x + \frac{r}{2}\ r\ (r+1) \ x^{2} + \frac{r}{6}\ r\ (r+1)\ (r+2)\ x^{3} + ... \ (2)$

Kind regards

$\chi$ $\sigma$

... of course for x = -1 and r = 0 using the (1) or (2) is $\displaystyle (1-1)^{0} = 0^{0} = 1$... an happy 2015 and many more years of happiness to those who still believe that $0^{0}$ is an 'indeterminate form '(Happy)...

Kind regards

$\chi$ $\sigma$
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top