How to calculate total interest from annuity-immediate?

  • Thread starter Thread starter Eclair_de_XII
  • Start date Start date
  • Tags Tags
    Interest
Click For Summary
To calculate the total interest from an annuity-immediate for a loan of $10,000 repaid in twenty level installments at an 8% nominal interest rate, the level payment amount was initially calculated as $217.45, but this was incorrect. The correct approach involves using the present value formula for level payments, leading to a recalculated payment of approximately $735.82. Multiplying this payment by twenty gives a total payment obligation of $14,716.35. Subtracting the original loan amount reveals that the total interest accrued over the ten-year period is approximately $4,716.35. Accurate calculations and understanding of the formulas are crucial for determining the correct interest amount.
Eclair_de_XII
Messages
1,082
Reaction score
91

Homework Statement


"A loan of 10,000 is repaid by twenty level installments at the end of every six months. The nominal interest rate is 8%, convertible half-yearly. Find the total amount of interest payment made over the ten-year period."

Homework Equations

The Attempt at a Solution


##10000=k[\frac{1-(1.04)^{-20}}{0.04}]##
##k=10000[\frac{0.04}{1-(1.04)^{-20}}]=217.45##

I think I calculated the amount of each of the twenty level installments, but I don't know how to proceed to calculate total interest accrued from here.
 
Physics news on Phys.org
Eclair_de_XII said:

Homework Statement


"A loan of 10,000 is repaid by twenty level installments at the end of every six months. The nominal interest rate is 8%, convertible half-yearly. Find the total amount of interest payment made over the ten-year period."

Homework Equations

The Attempt at a Solution


##10000=k[\frac{1-(1.04)^{-20}}{0.04}]##
##k=10000[\frac{0.04}{1-(1.04)^{-20}}]=217.45##

I think I calculated the amount of each of the twenty level installments, but I don't know how to proceed to calculate total interest accrued from here.

can you show a bit more work? I didn't understand this.

##20\big(k\big) = 20\big(217.45\big) \lt 10,000 \lt \text{total cash pmt obligation }##

so that doesn't seem to be the amount for the 20 level installments.

- - - -
The idea, like in a lot of math, is to set something up then run it forward and run it backward. The forward part is you have a present value of payments that is ##10,000##. So you have

##10,000 = \sum_{k=1}^{20} \frac{x}{(1+r)^k} = x \sum_{k=1}^{20} \delta^k##

where ##\delta := \frac{1}{1+r}##, ##x = \text{level payment amount}## and I think ##r = 0.04##, though using the term that interest is 'convertible' seems nonstandard at least compared to what I'm used to, so there may be fine tuning need on compounding periods.

My guess
is that you accidentally used ##\delta = (1+r)## instead.
- - - -
solve for ##x## and that's first part. The second part is a simple decomposition of the total payments.
 
  • Like
Likes scottdave
Okay, I ran through the numbers in Excel and came up with ##x=735.82##. Then I multiplied that by twenty, and subtracted by ##10,000## for the interest accrued, which would be ##I=4716.35##. In any case, I initially used a formula in my textbook that expressed the present value of ##n## level payments with interest rate ##i## as ##a(n,i)=\frac{1-(1+i)^{-n}}{i}##, which is how I got that first answer.
 
^you flipped it over you should use
##k=\frac{i}{1-(1+i)^{-n}}a##

edit: I see that is what you used. Arithmetic error?
 
Yes, I suppose so.
 

Similar threads

Replies
1
Views
1K
Replies
10
Views
6K
Replies
14
Views
7K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
3
Views
4K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K