MHB How to change the subject when exponential is involved

MWD02
Messages
3
Reaction score
0
It's been a long time since I've worried about this - but could someone help me make Pr(x) the subject (I can't remember if it's possible, if it's not, I'd love a brief explanation):

T = S [(1-Pr(x))^N] + Pr(x)

Thanks in advance!
 
Mathematics news on Phys.org
Sorry, I should mention N isn't necessarily an integer.
 
MWD02 said:
It's been a long time since I've worried about this - but could someone help me make Pr(x) the subject (I can't remember if it's possible, if it's not, I'd love a brief explanation):

T = S [(1-Pr(x))^N] + Pr(x)

Thanks in advance!

MWD02 said:
Sorry, I should mention N isn't necessarily an integer.

Hi MWD02! Welcome to MHB! ;)

Even if $N$ would be an integer, for $N\ge 5$ this is a polynomial of at least the 5th degree with at least 3 terms, for which there are typically no 'analytic' solutions.
So I think we're stuck with numerical solutions, meaning we have to make approximations. (Worried)
 
Ah I was afraid someone would use the word "approximations"!... Oh well, I'll see what I can do for my particular problem.

Thanks very much for the reply! :D
 
Well, you probably could (I won't try to do it) rearrange the equation so the solution can be written in terms of the "Lambert W function" (defined as the inverse function to f(x)= xe^x) but then your calculator probably does not have a "W function" key!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
2
Views
2K
Replies
3
Views
3K
Replies
3
Views
1K
Replies
1
Views
3K
Replies
6
Views
2K
Replies
9
Views
2K
Back
Top