How to characterise solutions to an unsolved equation

  • Context: Undergrad 
  • Thread starter Thread starter NotEuler
  • Start date Start date
Click For Summary
SUMMARY

This discussion focuses on characterizing solutions to the equation a + bx = (cx + dx^2) * g'(x), where g(x) is an unknown differentiable function. The participants explore the implications of g'(x) being constant versus non-constant and the challenges of integrating both sides of the equation. The key takeaway is that the dependence of solutions on g'(x) requires additional information about the constants a, b, c, and d, as well as the function g(x) itself to determine specific values of x that satisfy the equation.

PREREQUISITES
  • Understanding of differential equations and their solutions
  • Familiarity with the fundamental theorem of calculus
  • Knowledge of partial fraction decomposition techniques
  • Basic concepts of differentiable functions
NEXT STEPS
  • Investigate the role of differentiability in solving differential equations
  • Learn about the implications of constant versus variable derivatives in function behavior
  • Explore methods for characterizing solutions to nonlinear equations
  • Study specific examples of equations involving unknown functions and their solutions
USEFUL FOR

Mathematicians, students of calculus, and anyone interested in solving differential equations with unknown functions will benefit from this discussion.

NotEuler
Messages
58
Reaction score
2
TL;DR
Equation a+bx=(cx+dx^2)*g'(x). I don't know g(x) but it is differentiable. What can I say about the dependence of solutions on g(x) and/or g'(x)?
I'm pondering a seemingly simple problem: Say I have an equation with an unknown function in it. For example,
a+bx=(cx+dx^2)*g'(x)
I don't know g(x) but it is differentiable. What can I say about the dependence of solutions on g(x)?
I don't know the function g(x), except that it is differentiable.

If g'(x) is constant, this seems straightforward. What if g'(x) is not a constant? What can I say with certainty and rigor about the dependence of the solution on g'(x) and g(x)?
 
Physics news on Phys.org
##g'(x)=\frac{ax+b}{cx+dx^2}##
Now integrate both sides. On the left side you get ##g(x)## plus a constant from the fundamental theorem of calculus. I'll leave it up to you to try integrating the right side (hint: try partial fraction decomposition)
 
Thank you Shredder. I may have phrased my question poorly, and am not sure if your answer really addresses what I intended to say.

What I meant is: there is some value of x that solves the original equation. That value will somehow depend on g'(x). How can that dependence be characterised?

I am not sure how integrating will help. Then I will just have an equation with g(x) on one side and a function of x on the other, and I still have the same problem.

Or perhaps I misunderstand something here.
 
NotEuler said:
Thank you Shredder. I may have phrased my question poorly, and am not sure if your answer really addresses what I intended to say.

What I meant is: there is some value of x that solves the original equation. That value will somehow depend on g'(x). How can that dependence be characterised?

I am not sure how integrating will help. Then I will just have an equation with g(x) on one side and a function of x on the other, and I still have the same problem.

Or perhaps I misunderstand something here.
Generally, the goal of these equations is to solve for the function g(x). More information is then required to get a specific value of x.
 
NotEuler said:
Or perhaps I misunderstand something here.
You ought to be precise about the whole question. Do you have "known" constants ##a, b, c,d## and a "known" function ##g(x)##? And you want to find the specific values of ##x## that solve you equation?
 
With ##x=0##, assuming that ##g'(0) \ne \infty##, we must have ##a=0##. Also, what do you mean by "original equation" in post #3?
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
589