- #1
fog37
- 1,569
- 108
- TL;DR Summary
- Polar coordinates, plotting polar equations, scale invariance
Hello,
In the plane, using Cartesian coordinates ##x## and ##y##, an equation (or a function) is a relationship between the ##x## and ##y## variables expressed as ##y=f(x)##. The variable ##y## is usually the dependent variable while ##x## is the independent variable.
The polar coordinates ##r## and ##\theta## can be used instead of ##x## and ##y## to describe the same mathematical object. The variable ##r## is the dependent variable and a general polar equation has the form ##r=g(\theta)##. In general, when plotting a polar function like ##r=g(\theta)##, we plot it over the Cartesian axes instead of labeling the axes ##r## and ##\theta##. Why? For example, the polar equation of a circle of radius 4 centered at the origin is ##r=4## and the graph looks like a circle if plotted in the x-y plane. However, if plotted with the axes labeled ##r## and ##\theta##, the graph of ##r=4## would just be a horizontal straight line. Same goes for other coordinate systems: we always plot using the corresponding ##x=rcos\theta## and ##y=rsin\theta## values that derive from the specific ##r## and ##\theta##.
Scale Invariance: I read about polar equations describing shapes that are scale invariant: if scaled up by a constant, the enlarged shape is represented by the same parent equation, just rotated. I don't think all polar equations behave like this. What makes certain polar functions be scale invariant while others are not? Example: ##r=e^{\theta}##, if scaled up by a constant##A##, ##Ae^{(\theta)}=e^{(\theta+\theta_0)}## with the scale parameter ##A=e^{\theta_0}##. I guess only polar functions involving exponential functions have this property, correct? These shapes are said to be specified only in terms of angles. Isn't that true for any polar equation since ##r=g(\theta)## and we can always express ##r## in terms of ##\theta##?
Thanks!
In the plane, using Cartesian coordinates ##x## and ##y##, an equation (or a function) is a relationship between the ##x## and ##y## variables expressed as ##y=f(x)##. The variable ##y## is usually the dependent variable while ##x## is the independent variable.
The polar coordinates ##r## and ##\theta## can be used instead of ##x## and ##y## to describe the same mathematical object. The variable ##r## is the dependent variable and a general polar equation has the form ##r=g(\theta)##. In general, when plotting a polar function like ##r=g(\theta)##, we plot it over the Cartesian axes instead of labeling the axes ##r## and ##\theta##. Why? For example, the polar equation of a circle of radius 4 centered at the origin is ##r=4## and the graph looks like a circle if plotted in the x-y plane. However, if plotted with the axes labeled ##r## and ##\theta##, the graph of ##r=4## would just be a horizontal straight line. Same goes for other coordinate systems: we always plot using the corresponding ##x=rcos\theta## and ##y=rsin\theta## values that derive from the specific ##r## and ##\theta##.
Scale Invariance: I read about polar equations describing shapes that are scale invariant: if scaled up by a constant, the enlarged shape is represented by the same parent equation, just rotated. I don't think all polar equations behave like this. What makes certain polar functions be scale invariant while others are not? Example: ##r=e^{\theta}##, if scaled up by a constant##A##, ##Ae^{(\theta)}=e^{(\theta+\theta_0)}## with the scale parameter ##A=e^{\theta_0}##. I guess only polar functions involving exponential functions have this property, correct? These shapes are said to be specified only in terms of angles. Isn't that true for any polar equation since ##r=g(\theta)## and we can always express ##r## in terms of ##\theta##?
Thanks!