How to Compute charge ##Q## of a particular state in free Dirac field

  • Thread starter Thread starter Pouramat
  • Start date Start date
  • Tags Tags
    Charge
Pouramat
Messages
27
Reaction score
1
Homework Statement
For a free Dirac field, how can I explicitly compute the charge ##Q## of the state ##a_{p1}^{r \dagger}a_{p2}^{s \dagger} b_{p3}^{t \dagger}|0>##.
Relevant Equations
The operator $Q$ is :
\begin{equation}
Q = \int \frac{d^3 p}{(2 \pi)^3} \Sigma_s \bigg(a_p^{s \dagger}a_p^s-b_p^ {s \dagger} b_p^s \bigg)
\end{equation}
suppose I should evaluate $$Qa_{p1}^{r \dagger}a_{p2}^{s \dagger} b_{p3}^{t \dagger}$$ I get lost in the commutator relation. Any help?
 
Last edited by a moderator:
Physics news on Phys.org
Hint: You need, of course anti-commutator relations, because the Dirac field must be quantized as fermions. The goal is to bring annihilation operators to the right, so that it's acting on the vacuum state, giving 0. Note that for arbitrary operators
$$[\hat{A},\hat{B} \hat{C}]=\{\hat{A},\hat{B} \} \hat{C}-\hat{B} \{\hat{A},\hat{C} \}.$$
Further you have
$$\{\hat{a}_p^{s},\hat{a}_{p'}^{s' \dagger} \}=(2 \pi)^3 \delta^{(3)}(\vec{p}-\vec{p}') \delta_{ss'}$$
and similar for the b's. All other anticommutators vanish.

It's also intuitively clear, what the charge of this state is, since obviously any a-particle carries a charge of +1 and any b-particle (the anti-particle of the a-particle) carries charge -1. But it's a good exercise to verify this by the explicit calculation.
 
  • Like
Likes Delta Prime
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top