MHB How to Determine the Order of \( g^8 \) in a Group?

  • Thread starter Thread starter Guest2
  • Start date Start date
  • Tags Tags
    Element Group
Guest2
Messages
192
Reaction score
0
Say an element $g$ in a group has order $28$. How do I find the order of say $g^8$?
 
Physics news on Phys.org
Guest said:
Say an element $g$ in a group has order $28$. How do I find the order of say $g^8$?

Hi Guest,

We are looking for the lowest $k$ such that $(g^{8})^k = 1$.
And we know that $28$ is the lowest such that $g^{28} = 1$.
That means we're looking for the lowest $k$ such that $8k$ is a multiple of $28$.
That is:
$$k = \frac{\text{lcm}(28,8)}{8}$$
 
I like Serena said:
Hi Guest,

We are looking for the lowest $k$ such that $(g^{8})^k = 1$.
And we know that $28$ is the lowest such that $g^{28} = 1$.
That means we're looking for the lowest $k$ such that $8k$ is a multiple of $28$.
That is:
$$k = \frac{\text{lcm}(28,8)}{8}$$
Thanks. I wonder whether there's a systematic way of working this out if one has to find $g^i$ for all $2 \le i \le 27$?
 
Last edited:
Guest said:
Thanks. I wonder whether there's a systematic way of working this out if one has to find $g^i$ for all $2 \le i \le 27$?

Alternatively, we can write it as:
$$k=\frac{28}{\gcd(28, i)}$$
That is, find the common prime factors and divide 28 by them.

I'm afraid that's as systematic as it gets.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...

Similar threads

Back
Top