MHB How to Determine the Order of \( g^8 \) in a Group?

  • Thread starter Thread starter Guest2
  • Start date Start date
  • Tags Tags
    Element Group
Guest2
Messages
192
Reaction score
0
Say an element $g$ in a group has order $28$. How do I find the order of say $g^8$?
 
Physics news on Phys.org
Guest said:
Say an element $g$ in a group has order $28$. How do I find the order of say $g^8$?

Hi Guest,

We are looking for the lowest $k$ such that $(g^{8})^k = 1$.
And we know that $28$ is the lowest such that $g^{28} = 1$.
That means we're looking for the lowest $k$ such that $8k$ is a multiple of $28$.
That is:
$$k = \frac{\text{lcm}(28,8)}{8}$$
 
I like Serena said:
Hi Guest,

We are looking for the lowest $k$ such that $(g^{8})^k = 1$.
And we know that $28$ is the lowest such that $g^{28} = 1$.
That means we're looking for the lowest $k$ such that $8k$ is a multiple of $28$.
That is:
$$k = \frac{\text{lcm}(28,8)}{8}$$
Thanks. I wonder whether there's a systematic way of working this out if one has to find $g^i$ for all $2 \le i \le 27$?
 
Last edited:
Guest said:
Thanks. I wonder whether there's a systematic way of working this out if one has to find $g^i$ for all $2 \le i \le 27$?

Alternatively, we can write it as:
$$k=\frac{28}{\gcd(28, i)}$$
That is, find the common prime factors and divide 28 by them.

I'm afraid that's as systematic as it gets.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top