MHB How to Determine the Order of \( g^8 \) in a Group?

  • Thread starter Thread starter Guest2
  • Start date Start date
  • Tags Tags
    Element Group
Guest2
Messages
192
Reaction score
0
Say an element $g$ in a group has order $28$. How do I find the order of say $g^8$?
 
Physics news on Phys.org
Guest said:
Say an element $g$ in a group has order $28$. How do I find the order of say $g^8$?

Hi Guest,

We are looking for the lowest $k$ such that $(g^{8})^k = 1$.
And we know that $28$ is the lowest such that $g^{28} = 1$.
That means we're looking for the lowest $k$ such that $8k$ is a multiple of $28$.
That is:
$$k = \frac{\text{lcm}(28,8)}{8}$$
 
I like Serena said:
Hi Guest,

We are looking for the lowest $k$ such that $(g^{8})^k = 1$.
And we know that $28$ is the lowest such that $g^{28} = 1$.
That means we're looking for the lowest $k$ such that $8k$ is a multiple of $28$.
That is:
$$k = \frac{\text{lcm}(28,8)}{8}$$
Thanks. I wonder whether there's a systematic way of working this out if one has to find $g^i$ for all $2 \le i \le 27$?
 
Last edited:
Guest said:
Thanks. I wonder whether there's a systematic way of working this out if one has to find $g^i$ for all $2 \le i \le 27$?

Alternatively, we can write it as:
$$k=\frac{28}{\gcd(28, i)}$$
That is, find the common prime factors and divide 28 by them.

I'm afraid that's as systematic as it gets.
 
Thread 'How to define vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
1
Views
361
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 26 ·
Replies
26
Views
678
  • · Replies 4 ·
Replies
4
Views
352
  • · Replies 13 ·
Replies
13
Views
943
  • · Replies 17 ·
Replies
17
Views
9K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
2K