How to determine the same moment of inertia in two different ways?

AI Thread Summary
The discussion focuses on determining the moment of inertia using two methods: one with thickness dx and the other with thickness dy. The user presents equations involving area mass density (σ) and integrals to calculate the moment of inertia regarding the y-axis. There is confusion about the appropriate use of variables and the correct form of the equations, particularly regarding the integration limits and the squared terms. The conversation highlights the importance of accurately interpreting variables in the context of the problem. Ultimately, the goal is to achieve consistent results through both methods of calculation.
Tapias5000
Messages
46
Reaction score
10
Homework Statement
determine the moment of inertia of the area with respect to the y-axis. with different rectangular elements, solve the problem in two ways: (a) with thickness dx, and (b) with thickness dy.
Relevant Equations
## I_x=\int _{ }^{ }y^2dA ##
Imagen2.png

My solution is

<math xmlns=http://www.w3.org/1998/Math/MathML display=block data-is-equatio=1 data-latex=\begin{array}{l}I_x=\int_{ }^{ }y^2dA\\
I_x=\int_0^4y^22xdy\ \left[y=4-4x^2,\ \textcolor{#E94D40}{\sqrt{\frac{4-y}{4}}=x}\right]\\
I_x=2\int_0^4y^2\sqrt{\frac{4-y}{4}}dy\ \left(u=\frac{4-y}{4},\ dy=-4du\right)\\
I_x=-8\int_0^4y^2\sqrt{u}du\ \left[u=\frac{4-y}{4},\ \textcolor{#E94D40}{4-4u=y}\right]\\
I_x=-8\int_0^4\left(4-4u\right)^2\sqrt{u}du\\
I_x=-8\int_0^4\left(4^2-2\cdot4\cdot4u+\left(4u\right)^2\right)\sqrt{u}du\\
I_x=-8\int_0^4\left(16-32u+16u^2\right)\sqrt{u}du\\
I_x=-8\int_0^4\left(16\sqrt{u}-32u\sqrt{u}+16u^2\sqrt{u}\right)du\\
I_x=-\frac{32\cdot8}{3}u^{\frac{3}{2}}+\frac{64\cdot8}{5}u^{\frac{5}{2}}-\frac{32\cdot8}{7}u^{\frac{7}{2}}\ \left[\textcolor{#E94D40}{u=\frac{4-y}{4}}\right]\\
I_x=-\frac{32\cdot8}{3}\left(\frac{4-y}{4}\right)^{\frac{3}{2}}+\frac{64\cdot8}{5}\left(\frac{4-y}{4}\right)^{\frac{5}{2}}-\frac{32\cdot8}{7}\left(\frac{4-y}{4}\right)^{\frac{7}{2}}\begin{bmatrix}4\\
0\end{bmatrix}\\
I_x=\cancel{\textcolor{#E94D40}{-\frac{32\cdot8}{3}\left(\frac{4-4}{4}\right)^{\frac{3}{2}}+\frac{64\cdot8}{5}\left(\frac{4-4}{4}\right)^{\frac{5}{2}}-\frac{32\cdot8}{7}\left(\frac{4-4}{4}\right)^{\frac{7}{2}}}}\\
-\left(-\frac{32\cdot8}{3}\left(\frac{4-0}{4}\right)^{\frac{3}{2}}+\frac{64\cdot8}{5}\left(\frac{4-0}{4}\right)^{\frac{5}{2}}-\frac{32\cdot8}{7}\left(\frac{4-0}{4}\right)^{\frac{7}{2}}\right)\\
I_x=19.5\mathit{\text{pulg}}^4\\
\ \end{array}><mtable columnalign=left columnspacing=1em rowspacing=4pt><mtr><mtd><msub><mi>I</mi><mi>x</mi></msub><mo>=</mo><msubsup><mo data-mjx-texclass=OP>∫</mo><mrow data-mjx-texclass=ORD/><mrow data-mjx-texclass=ORD/></msubsup><msup><mi>y</mi><mn>2</mn></msup><mi>d</mi><mi>A</mi></mtd></mtr><mtr><mtd><msub><mi>I</mi><mi>x</mi></msub><mo>=</mo><msubsup><mo data-mjx-texclass=OP>∫</mo><mn>0</mn><mn>4</mn></msubsup><msup><mi>y</mi><mn>2</mn></msup><mn>2</mn><mi>x</mi><mi>d</mi><mi>y</mi><mtext></mtext><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>[</mo><mi>y</mi><mo>=</mo><mn>4</mn><mo>−</mo><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>,</mo><mtext></mtext><mstyle mathcolor=#E94D40><msqrt><mfrac><mrow><mn>4</mn><mo>−</mo><mi>y</mi></mrow><mn>4</mn></mfrac></msqrt><mo>=</mo><mi>x</mi></mstyle><mo data-mjx-texclass=CLOSE>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mi>I</mi><mi>x</mi></msub><mo>=</mo><mn>2</mn><msubsup><mo data-mjx-texclass=OP>∫</mo><mn>0</mn><mn>4</mn></msubsup><msup><mi>y</mi><mn>2</mn></msup><msqrt><mfrac><mrow><mn>4</mn><mo>−</mo><mi>y</mi></mrow><mn>4</mn></mfrac></msqrt><mi>d</mi><mi>y</mi><mtext></mtext><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mi>u</mi><mo>=</mo><mfrac><mrow><mn>4</mn><mo>−</mo><mi>y</mi></mrow><mn>4</mn></mfrac><mo>,</mo><mtext></mtext><mi>d</mi><mi>y</mi><mo>=</mo><mo>−</mo><mn>4</mn><mi>d</mi><mi>u</mi><mo data-mjx-texclass=CLOSE>)</mo></mrow></mtd></mtr><mtr><mtd><msub><mi>I</mi><mi>x</mi></msub><mo>=</mo><mo>−</mo><mn>8</mn><msubsup><mo data-mjx-texclass=OP>∫</mo><mn>0</mn><mn>4</mn></msubsup><msup><mi>y</mi><mn>2</mn></msup><msqrt><mi>u</mi></msqrt><mi>d</mi><mi>u</mi><mtext></mtext><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>[</mo><mi>u</mi><mo>=</mo><mfrac><mrow><mn>4</mn><mo>−</mo><mi>y</mi></mrow><mn>4</mn></mfrac><mo>,</mo><mtext></mtext><mstyle mathcolor=#E94D40><mn>4</mn><mo>−</mo><mn>4</mn><mi>u</mi><mo>=</mo><mi>y</mi></mstyle><mo data-mjx-texclass=CLOSE>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mi>I</mi><mi>x</mi></msub><mo>=</mo><mo>−</mo><mn>8</mn><msubsup><mo data-mjx-texclass=OP>∫</mo><mn>0</mn><mn>4</mn></msubsup><msup><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mn>4</mn><mo>−</mo><mn>4</mn><mi>u</mi><mo data-mjx-texclass=CLOSE>)</mo></mrow><mn>2</mn></msup><msqrt><mi>u</mi></msqrt><mi>d</mi><mi>u</mi></mtd></mtr><mtr><mtd><msub><mi>I</mi><mi>x</mi></msub><mo>=</mo><mo>−</mo><mn>8</mn><msubsup><mo data-mjx-texclass=OP>∫</mo><mn>0</mn><mn>4</mn></msubsup><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><msup><mn>4</mn><mn>2</mn></msup><mo>−</mo><mn>2</mn><mo>⋅</mo><mn>4</mn><mo>⋅</mo><mn>4</mn><mi>u</mi><mo>+</mo><msup><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mn>4</mn><mi>u</mi><mo data-mjx-texclass=CLOSE>)</mo></mrow><mn>2</mn></msup><mo data-mjx-texclass=CLOSE>)</mo></mrow><msqrt><mi>u</mi></msqrt><mi>d</mi><mi>u</mi></mtd></mtr><mtr><mtd><msub><mi>I</mi><mi>x</mi></msub><mo>=</mo><mo>−</mo><mn>8</mn><msubsup><mo data-mjx-texclass=OP>∫</mo><mn>0</mn><mn>4</mn></msubsup><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mn>16</mn><mo>−</mo><mn>32</mn><mi>u</mi><mo>+</mo><mn>16</mn><msup><mi>u</mi><mn>2</mn></msup><mo data-mjx-texclass=CLOSE>)</mo></mrow><msqrt><mi>u</mi></msqrt><mi>d</mi><mi>u</mi></mtd></mtr
5R0312grRjtCb0_DBMKABiZNFnXFZDNdnBYiWDqWz9Jf=s1600.png

now I am asked for the same result but in this form but I don't know where to start.
Lw0m9UUMPaizX9NMeeRmZaIPDWuUg1pKXf6t720gKKzE=s1600.png
 
Physics news on Phys.org
How about
2\sigma \int_0^1 x^2 y \ \ dx=32\sigma \int_0^{\pi/2} \sin^2\theta \cos^2\theta d\theta
where ##\sigma## is area mass density of board.
 
Last edited:
anuttarasammyak said:
How about
2\sigma \int_0^1 x^2 y \ \ dx=32\sigma \int_0^{\pi/2} \sin^2\theta \cos^2\theta d\theta
where ##\sigma## is area mass density of board.
waat, Can you tell me the name of this method?
 
I misinterpreted y so
2\sigma \int_0^1 x^2 y \ \ dx=2\int_0^1 x^2 (4-4x^2) \ \ dx
This a way (b).
Tapias5000 said:
Homework Statement:: determine the moment of inertia of the area with respect to the y-axis. with different rectangular elements, solve the problem in two ways: (a) with thickness dx, and (b) with thickness dy.
Relevant Equations:: ## I_x=\int _{ }^{ }y^2dA ##
This relevant equation seems inappropriate because x should be squared for y-axis rotation inertia.
For (a)

2\sigma\int_0^4 dy \int_0^{\frac{\sqrt{4-y}}{2}} x^2 dx
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top