How to determine the same moment of inertia in two different ways?

Click For Summary
SUMMARY

This discussion focuses on determining the moment of inertia of an area with respect to the y-axis using two different methods: one with thickness dx and the other with thickness dy. The relevant equations include the integral for moment of inertia, specifically ## I_x=\int _{ }^{ }y^2dA ##, and the area mass density denoted as ##\sigma##. The user explores the equivalence of two integral expressions, specifically 2\sigma ∫₀¹ x²y dx and 32σ ∫₀^{π/2} sin²θ cos²θ dθ, to derive the same moment of inertia.

PREREQUISITES
  • Understanding of moment of inertia concepts
  • Familiarity with integral calculus
  • Knowledge of area mass density in physics
  • Experience with variable substitution in integrals
NEXT STEPS
  • Study the derivation of moment of inertia using different coordinate systems
  • Learn about the application of area mass density in structural analysis
  • Explore the method of integration by parts in calculus
  • Investigate the use of polar coordinates in calculating moments of inertia
USEFUL FOR

Students in physics or engineering, particularly those studying mechanics and structural analysis, as well as educators looking for examples of calculating moment of inertia using different methods.

Tapias5000
Messages
46
Reaction score
10
Homework Statement
determine the moment of inertia of the area with respect to the y-axis. with different rectangular elements, solve the problem in two ways: (a) with thickness dx, and (b) with thickness dy.
Relevant Equations
## I_x=\int _{ }^{ }y^2dA ##
Imagen2.png

My solution is

<math xmlns=http://www.w3.org/1998/Math/MathML display=block data-is-equatio=1 data-latex=\begin{array}{l}I_x=\int_{ }^{ }y^2dA\\
I_x=\int_0^4y^22xdy\ \left[y=4-4x^2,\ \textcolor{#E94D40}{\sqrt{\frac{4-y}{4}}=x}\right]\\
I_x=2\int_0^4y^2\sqrt{\frac{4-y}{4}}dy\ \left(u=\frac{4-y}{4},\ dy=-4du\right)\\
I_x=-8\int_0^4y^2\sqrt{u}du\ \left[u=\frac{4-y}{4},\ \textcolor{#E94D40}{4-4u=y}\right]\\
I_x=-8\int_0^4\left(4-4u\right)^2\sqrt{u}du\\
I_x=-8\int_0^4\left(4^2-2\cdot4\cdot4u+\left(4u\right)^2\right)\sqrt{u}du\\
I_x=-8\int_0^4\left(16-32u+16u^2\right)\sqrt{u}du\\
I_x=-8\int_0^4\left(16\sqrt{u}-32u\sqrt{u}+16u^2\sqrt{u}\right)du\\
I_x=-\frac{32\cdot8}{3}u^{\frac{3}{2}}+\frac{64\cdot8}{5}u^{\frac{5}{2}}-\frac{32\cdot8}{7}u^{\frac{7}{2}}\ \left[\textcolor{#E94D40}{u=\frac{4-y}{4}}\right]\\
I_x=-\frac{32\cdot8}{3}\left(\frac{4-y}{4}\right)^{\frac{3}{2}}+\frac{64\cdot8}{5}\left(\frac{4-y}{4}\right)^{\frac{5}{2}}-\frac{32\cdot8}{7}\left(\frac{4-y}{4}\right)^{\frac{7}{2}}\begin{bmatrix}4\\
0\end{bmatrix}\\
I_x=\cancel{\textcolor{#E94D40}{-\frac{32\cdot8}{3}\left(\frac{4-4}{4}\right)^{\frac{3}{2}}+\frac{64\cdot8}{5}\left(\frac{4-4}{4}\right)^{\frac{5}{2}}-\frac{32\cdot8}{7}\left(\frac{4-4}{4}\right)^{\frac{7}{2}}}}\\
-\left(-\frac{32\cdot8}{3}\left(\frac{4-0}{4}\right)^{\frac{3}{2}}+\frac{64\cdot8}{5}\left(\frac{4-0}{4}\right)^{\frac{5}{2}}-\frac{32\cdot8}{7}\left(\frac{4-0}{4}\right)^{\frac{7}{2}}\right)\\
I_x=19.5\mathit{\text{pulg}}^4\\
\ \end{array}><mtable columnalign=left columnspacing=1em rowspacing=4pt><mtr><mtd><msub><mi>I</mi><mi>x</mi></msub><mo>=</mo><msubsup><mo data-mjx-texclass=OP>∫</mo><mrow data-mjx-texclass=ORD/><mrow data-mjx-texclass=ORD/></msubsup><msup><mi>y</mi><mn>2</mn></msup><mi>d</mi><mi>A</mi></mtd></mtr><mtr><mtd><msub><mi>I</mi><mi>x</mi></msub><mo>=</mo><msubsup><mo data-mjx-texclass=OP>∫</mo><mn>0</mn><mn>4</mn></msubsup><msup><mi>y</mi><mn>2</mn></msup><mn>2</mn><mi>x</mi><mi>d</mi><mi>y</mi><mtext></mtext><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>[</mo><mi>y</mi><mo>=</mo><mn>4</mn><mo>−</mo><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>,</mo><mtext></mtext><mstyle mathcolor=#E94D40><msqrt><mfrac><mrow><mn>4</mn><mo>−</mo><mi>y</mi></mrow><mn>4</mn></mfrac></msqrt><mo>=</mo><mi>x</mi></mstyle><mo data-mjx-texclass=CLOSE>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mi>I</mi><mi>x</mi></msub><mo>=</mo><mn>2</mn><msubsup><mo data-mjx-texclass=OP>∫</mo><mn>0</mn><mn>4</mn></msubsup><msup><mi>y</mi><mn>2</mn></msup><msqrt><mfrac><mrow><mn>4</mn><mo>−</mo><mi>y</mi></mrow><mn>4</mn></mfrac></msqrt><mi>d</mi><mi>y</mi><mtext></mtext><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mi>u</mi><mo>=</mo><mfrac><mrow><mn>4</mn><mo>−</mo><mi>y</mi></mrow><mn>4</mn></mfrac><mo>,</mo><mtext></mtext><mi>d</mi><mi>y</mi><mo>=</mo><mo>−</mo><mn>4</mn><mi>d</mi><mi>u</mi><mo data-mjx-texclass=CLOSE>)</mo></mrow></mtd></mtr><mtr><mtd><msub><mi>I</mi><mi>x</mi></msub><mo>=</mo><mo>−</mo><mn>8</mn><msubsup><mo data-mjx-texclass=OP>∫</mo><mn>0</mn><mn>4</mn></msubsup><msup><mi>y</mi><mn>2</mn></msup><msqrt><mi>u</mi></msqrt><mi>d</mi><mi>u</mi><mtext></mtext><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>[</mo><mi>u</mi><mo>=</mo><mfrac><mrow><mn>4</mn><mo>−</mo><mi>y</mi></mrow><mn>4</mn></mfrac><mo>,</mo><mtext></mtext><mstyle mathcolor=#E94D40><mn>4</mn><mo>−</mo><mn>4</mn><mi>u</mi><mo>=</mo><mi>y</mi></mstyle><mo data-mjx-texclass=CLOSE>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mi>I</mi><mi>x</mi></msub><mo>=</mo><mo>−</mo><mn>8</mn><msubsup><mo data-mjx-texclass=OP>∫</mo><mn>0</mn><mn>4</mn></msubsup><msup><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mn>4</mn><mo>−</mo><mn>4</mn><mi>u</mi><mo data-mjx-texclass=CLOSE>)</mo></mrow><mn>2</mn></msup><msqrt><mi>u</mi></msqrt><mi>d</mi><mi>u</mi></mtd></mtr><mtr><mtd><msub><mi>I</mi><mi>x</mi></msub><mo>=</mo><mo>−</mo><mn>8</mn><msubsup><mo data-mjx-texclass=OP>∫</mo><mn>0</mn><mn>4</mn></msubsup><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><msup><mn>4</mn><mn>2</mn></msup><mo>−</mo><mn>2</mn><mo>⋅</mo><mn>4</mn><mo>⋅</mo><mn>4</mn><mi>u</mi><mo>+</mo><msup><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mn>4</mn><mi>u</mi><mo data-mjx-texclass=CLOSE>)</mo></mrow><mn>2</mn></msup><mo data-mjx-texclass=CLOSE>)</mo></mrow><msqrt><mi>u</mi></msqrt><mi>d</mi><mi>u</mi></mtd></mtr><mtr><mtd><msub><mi>I</mi><mi>x</mi></msub><mo>=</mo><mo>−</mo><mn>8</mn><msubsup><mo data-mjx-texclass=OP>∫</mo><mn>0</mn><mn>4</mn></msubsup><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mn>16</mn><mo>−</mo><mn>32</mn><mi>u</mi><mo>+</mo><mn>16</mn><msup><mi>u</mi><mn>2</mn></msup><mo data-mjx-texclass=CLOSE>)</mo></mrow><msqrt><mi>u</mi></msqrt><mi>d</mi><mi>u</mi></mtd></mtr
5R0312grRjtCb0_DBMKABiZNFnXFZDNdnBYiWDqWz9Jf=s1600.png

now I am asked for the same result but in this form but I don't know where to start.
Lw0m9UUMPaizX9NMeeRmZaIPDWuUg1pKXf6t720gKKzE=s1600.png
 
Physics news on Phys.org
How about
2\sigma \int_0^1 x^2 y \ \ dx=32\sigma \int_0^{\pi/2} \sin^2\theta \cos^2\theta d\theta
where ##\sigma## is area mass density of board.
 
Last edited:
anuttarasammyak said:
How about
2\sigma \int_0^1 x^2 y \ \ dx=32\sigma \int_0^{\pi/2} \sin^2\theta \cos^2\theta d\theta
where ##\sigma## is area mass density of board.
waat, Can you tell me the name of this method?
 
I misinterpreted y so
2\sigma \int_0^1 x^2 y \ \ dx=2\int_0^1 x^2 (4-4x^2) \ \ dx
This a way (b).
Tapias5000 said:
Homework Statement:: determine the moment of inertia of the area with respect to the y-axis. with different rectangular elements, solve the problem in two ways: (a) with thickness dx, and (b) with thickness dy.
Relevant Equations:: ## I_x=\int _{ }^{ }y^2dA ##
This relevant equation seems inappropriate because x should be squared for y-axis rotation inertia.
For (a)

2\sigma\int_0^4 dy \int_0^{\frac{\sqrt{4-y}}{2}} x^2 dx
 
Last edited:

Similar threads

  • · Replies 13 ·
Replies
13
Views
3K
Replies
25
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
8
Views
14K
Replies
24
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K