How to diagonalize a matrix with complex eigenvalues?

In summary: Could you please show me how to normalize an eigenvector?Thanks!The eigenvalues of A are ##1 \pm i \varphi/N,## not what you wrote. Your typo confused me, as I wondered how a real matrix with real eigenvalues could need complex eigenvectors.Could you please show me how to normalize an eigenvector?
  • #1
Haorong Wu
413
89

Homework Statement



Diagonalize the matrix $$ \mathbf {M} =
\begin{pmatrix}
1 & -\varphi /N\\
\varphi /N & 1\\
\end{pmatrix}
$$ to obtain the matrix $$ \mathbf{M^{'}= SMS^{-1} }$$

Homework Equations



First find the eigenvalues and eigenvectors of ##\mathbf{M}##, and then normalize the eigenvectors to get ##\mathbf{S^{-1}}##.

The Attempt at a Solution



After calculation, the eigenvalues are ## \lambda = 1 \pm \frac \varphi N##, and the corresponding eigenvectors (unnormalized) are ##\begin{pmatrix}
i \\ 1
\end{pmatrix}## and ##
\begin{pmatrix}
-i \\1
\end{pmatrix}
##.

Then I try to Schmidt them, but I failed to normalize them.

Could you help me normalize them?

Regards
 
Physics news on Phys.org
  • #2
Normalize = divide by their norm to get a vector with length 1.

The norm of the vector ##(i,1)## is ##\sqrt{2}##, so we get the normalized vector ##(i/\sqrt{2}, 1/\sqrt{2})##. Can you do the same thing for the other vector now?
 
  • #3
Math_QED said:
Normalize = divide by their norm to get a vector with length 1.

The norm of the vector ##(i,1)## is ##\sqrt{2}##, so we get the normalized vector ##(i/\sqrt{2}, 1/\sqrt{2})##. Can you do the same thing for the other vector now?

Thanks, Math_QED.

I concluded the normalized vectors are ##\frac {\left( i , 1\right) } {\sqrt 2}## and ##\frac {\left( -i , 1\right) } {\sqrt 2}##, as well. Then ##\mathbf {S^{-1}} = \frac 1 {\sqrt 2} \begin{pmatrix} i & -i \\ 1 & 1 \end{pmatrix}##.
However, ##\mathbf {SMS^{-1}} =\frac 1 {\sqrt 2} \begin{pmatrix} i & -i \\ 1 & 1 \end{pmatrix}
\begin{pmatrix}
1 & -\varphi /N\\
\varphi /N & 1\\
\end{pmatrix}
\frac 1 {\sqrt 2} \begin{pmatrix} -i & 1 \\ i & 1 \end{pmatrix}
= \begin{pmatrix} 1 & -i\varphi /N \\-\varphi /N & 1 \end{pmatrix}
## , which is not the diagonized matrix I should get.
There is definitely somewhere I am wrong, I can't find it out.
Could you please help me point it out?
Thanks!
 
  • #4
Haorong Wu said:
Thanks, Math_QED.

I concluded the normalized vectors are ##\frac {\left( i , 1\right) } {\sqrt 2}## and ##\frac {\left( -i , 1\right) } {\sqrt 2}##, as well. Then ##\mathbf {S^{-1}} = \frac 1 {\sqrt 2} \begin{pmatrix} i & -i \\ 1 & 1 \end{pmatrix}##.
However, ##\mathbf {SMS^{-1}} =\frac 1 {\sqrt 2} \begin{pmatrix} i & -i \\ 1 & 1 \end{pmatrix}
\begin{pmatrix}
1 & -\varphi /N\\
\varphi /N & 1\\
\end{pmatrix}
\frac 1 {\sqrt 2} \begin{pmatrix} -i & 1 \\ i & 1 \end{pmatrix}
= \begin{pmatrix} 1 & -i\varphi /N \\-\varphi /N & 1 \end{pmatrix}
## , which is not the diagonized matrix I should get.
There is definitely somewhere I am wrong, I can't find it out.
Could you please help me point it out?
Thanks!

You computed ##S^{-1}MS## not ##SMS^{-1}##, which is the one you want.
 
  • #5
Dick said:
You computed ##S^{-1}MS## not ##SMS^{-1}##, which is the one you want.
Oh, no! How embarrassing! I waste all the afternoon.

Thank you, Dick, and Math_QED.
 
  • #6
Haorong Wu said:

Homework Statement



Diagonalize the matrix $$ \mathbf {M} =
\begin{pmatrix}
1 & -\varphi /N\\
\varphi /N & 1\\
\end{pmatrix}
$$ to obtain the matrix $$ \mathbf{M^{'}= SMS^{-1} }$$

Homework Equations



First find the eigenvalues and eigenvectors of ##\mathbf{M}##, and then normalize the eigenvectors to get ##\mathbf{S^{-1}}##.

The Attempt at a Solution



After calculation, the eigenvalues are ## \lambda = 1 \pm \frac \varphi N##, and the corresponding eigenvectors (unnormalized) are ##\begin{pmatrix}
i \\ 1
\end{pmatrix}## and ##
\begin{pmatrix}
-i \\1
\end{pmatrix}
##.

Then I try to Schmidt them, but I failed to normalize them.

Could you help me normalize them?

Regards

The eigenvalues of A are ##1 \pm i \varphi/N,## not what you wrote. Your typo confused me, as I wondered how a real matrix with real eigenvalues could need complex eigenvectors.
 

1. What is the purpose of diagonalizing a matrix with complex eigenvalues?

Diagonalizing a matrix with complex eigenvalues allows us to simplify the matrix and make it easier to perform calculations on. It also helps us to understand the behavior of the matrix and its relationship to other matrices.

2. How do I know if a matrix has complex eigenvalues?

A matrix has complex eigenvalues if it has at least one complex number as an eigenvalue. This can be determined by solving for the eigenvalues of the matrix using the characteristic equation or by finding the roots of the characteristic polynomial.

3. What is the process for diagonalizing a matrix with complex eigenvalues?

The process for diagonalizing a matrix with complex eigenvalues involves finding the eigenvectors and eigenvalues of the matrix, constructing a diagonal matrix using the eigenvalues, and finding a similarity transformation matrix to transform the original matrix into the diagonal matrix.

4. Can a matrix with complex eigenvalues always be diagonalized?

No, not all matrices with complex eigenvalues can be diagonalized. In order for a matrix to be diagonalizable, it must have a complete set of linearly independent eigenvectors. If the matrix does not have enough linearly independent eigenvectors, it cannot be diagonalized.

5. Are there any applications for diagonalizing a matrix with complex eigenvalues?

Yes, diagonalizing a matrix with complex eigenvalues is commonly used in quantum mechanics, signal processing, and other fields of science and engineering. It is also useful for solving systems of differential equations and for studying the behavior of linear systems.

Similar threads

  • Calculus and Beyond Homework Help
Replies
2
Views
95
  • Calculus and Beyond Homework Help
Replies
6
Views
303
  • Calculus and Beyond Homework Help
Replies
2
Views
526
  • Calculus and Beyond Homework Help
Replies
7
Views
1K
Replies
9
Views
1K
  • Calculus and Beyond Homework Help
Replies
2
Views
1K
  • Calculus and Beyond Homework Help
Replies
12
Views
1K
  • Calculus and Beyond Homework Help
Replies
6
Views
2K
  • Calculus and Beyond Homework Help
Replies
4
Views
1K
  • Calculus and Beyond Homework Help
Replies
4
Views
841
Back
Top