How to Differentiate Using the Chain Rule?

Click For Summary
SUMMARY

The discussion focuses on differentiating the expression \frac{d}{d\epsilon}\left(\sqrt{1 + (y' + \epsilon g')^2}\right) using the chain rule in calculus of variations. The user initially struggles with the application of the chain rule but receives clarification that y and g can be treated as constants during differentiation. The correct approach involves substituting u = 1 + (y' + \epsilon g')^2 and applying the chain rule as \frac{df}{d\epsilon} = \frac{df}{du}\frac{du}{d\epsilon}, leading to the final derivative \frac{d\sqrt{u}}{du} \cdot \frac{du}{d\epsilon}.

PREREQUISITES
  • Understanding of basic calculus concepts, particularly derivatives.
  • Familiarity with the chain rule in differentiation.
  • Knowledge of functions and their derivatives, specifically in the context of calculus of variations.
  • Ability to manipulate algebraic expressions involving derivatives.
NEXT STEPS
  • Study the application of the chain rule in more complex derivatives.
  • Learn about the calculus of variations and its fundamental principles.
  • Explore examples of differentiating composite functions in calculus.
  • Review the treatment of constants in differentiation and their implications.
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus of variations, as well as anyone needing to refresh their understanding of differentiation techniques.

tomwilliam
Messages
142
Reaction score
3
I'm coming back to maths (calculus of variations) after a long hiatus, and am a little rusty. I can't remember how to do the following derivative:

##
\frac{d}{d\epsilon}\left(\sqrt{1 + (y' + \epsilon g')^2}\right)
##
where ##y, g## are functions of ##x##

I know I should substitute say ##u = 1 + (y' + \epsilon g')^2##
then use the chain rule, ## \frac{\partial\sqrt{u}}{\partial x} \frac{\partial x}{\partial \epsilon}##

But now I'm a little stuck. Can anyone help with a pointer?
I know what the final answer is, but can't get there.
Thanks
 
Physics news on Phys.org
tomwilliam said:
I'm coming back to maths (calculus of variations) after a long hiatus, and am a little rusty. I can't remember how to do the following derivative:

##
\frac{d}{d\epsilon}\left(\sqrt{1 + (y' + \epsilon g')^2}\right)
##
where ##y, g## are functions of ##x##

I know I should substitute say ##u = 1 + (y' + \epsilon g')^2##
then use the chain rule, ## \frac{\partial\sqrt{u}}{\partial x} \frac{\partial x}{\partial \epsilon}##

But now I'm a little stuck. Can anyone help with a pointer?
I know what the final answer is, but can't get there.
Thanks
You have a function ##f(u(\epsilon))## and the chain rule is:
$$\frac{df}{d\epsilon} = \frac{df}{du}\frac{du}{d\epsilon}$$ Note that ##x## and##y## don't come into this.
 
  • Like
Likes   Reactions: Delta2
Ok, thanks, I see where my mistake came in.
So now I have
##
\frac{d\sqrt{u}}{du}=(1/2)u^{-1/2}
##
and
##
\frac{du}{d\epsilon}= 2(y' + \epsilon g')
##

so ## \frac {df}{d\epsilon} = (1/2)u^{-1/2}\times 2(y' + \epsilon g') ##

but I seem to be a factor of ##g'## out.
 
tomwilliam said:
##
\frac{du}{d\epsilon}= 2(y' + \epsilon g')
##
You need to take more care over that step.
 
tomwilliam said:
I can't remember how to do the following derivative:

##
\frac{d}{d\epsilon}\left(\sqrt{1 + (y' + \epsilon g')^2}\right)
##
where ##y, g## are functions of ##x##

I know I should substitute say ##u = 1 + (y' + \epsilon g')^2##
then use the chain rule, ## \frac{\partial\sqrt{u}}{\partial x} \frac{\partial x}{\partial \epsilon}##
Since it's not given that ##\epsilon## is a function of x, there is no need for partial derivatives here. As @PeroK already noted, y and g (and therefore y' and g') don't enter into the calculation at all. They can all be considered to be constants, as far as the differentiation goes.
With your substitution, ##u = 1 + (y' + \epsilon g')^2 = h(u)##,
the chain rule would look like this: ##\frac d {du}(u^{1/2}) \cdot \frac {du}{d\epsilon}##.
 
  • Like
Likes   Reactions: Delta2
Thanks to both of you...I understand it now.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K