How to Evaluate the Integral of the Square Root of 9+4x^2?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around evaluating the integral of the square root of the expression \(9 + 4x^2\). Participants explore various methods, including trigonometric and hyperbolic substitutions, and engage in detailed mathematical reasoning and transformations related to the integral.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Exploratory
  • Debate/contested

Main Points Raised

  • One participant suggests using the substitution \(x = \frac{3}{2}\tan(u)\) and provides the differential \(dx = \sec^2(u)\).
  • Another participant proposes a different substitution \(x = \frac{3}{2}\sec(x)\) and derives an integral involving \(\tan(x)\).
  • A later reply modifies the first substitution to emphasize its simplicity, maintaining the same differential.
  • One participant rewrites the integral in terms of hyperbolic functions, using \(I = 3\int \sqrt{\left(\frac{2}{3}x\right)^2 + 1}\,dx\) and introduces the substitution \(\frac{2}{3}x = \sinh(u)\).
  • Another participant questions how the term \(\frac{9}{4}\arsinh\left(\frac{2}{3}x\right)\) relates to \(\frac{9\ln\left({\sqrt{4x^2+9}}\right)+2x}{4}\), indicating a potential misunderstanding or error.
  • Several participants engage in deriving and simplifying expressions involving \(\sinh\) and \(\cosh\), with one participant providing a detailed transformation of the integral using hyperbolic functions.
  • There is a discussion about the relationship between \(\sinh^{-1}(x)\) and logarithmic expressions, with participants attempting to verify these identities.

Areas of Agreement / Disagreement

Participants present multiple competing views and methods for evaluating the integral, with no consensus reached on a single approach or final expression. Disagreements arise particularly around the transformations and equivalences of different forms of the integral.

Contextual Notes

Some participants express uncertainty regarding the steps taken in transformations, particularly in relation to hyperbolic functions and logarithmic identities. The discussion includes various assumptions and conditions that are not fully resolved.

Who May Find This Useful

This discussion may be useful for students and practitioners interested in integral calculus, particularly those exploring different methods of integration involving square roots and hyperbolic functions.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Evaluate $\int\sqrt{9+4{x}^{2}}\ dx$
$$
\displaystyle
x= \frac{3}{2}\tan(u)
\ \ dx= \sec^2(u)
$$
 
Last edited:
Physics news on Phys.org
karush said:
Evaluate $\int\sqrt{9+4{x}^{2}}\ dx$
$$
\displaystyle
x= \frac{3}{2}\sec(x)
\ \ dx= \frac{3\sin\left({x}\right)}{2\cos^2 \left({x}\right)}
$$
Then

$\displaystyle \int\sqrt{9+4 \left( \frac{3}{2} \sec{(x) }\right)^2 } \ dx
\implies 3\int\tan\left({x}\right)\ dx
$
So far?.

$\tan(x) = \dfrac{\sin(x)}{\cos(x)}$ and $\frac{d}{dx} \cos(x) = - \ sin (x)$ you should now be able to proceed
 
I changed this looks easier
$$
\displaystyle
x= \frac{3}{2}\tan(u)
\ \ dx= \frac{3}{2}\sec^2(u)
$$
 
I would write:

$$I=\int \sqrt{9+4x^2}\,dx=3\int \sqrt{\left(\frac{2}{3}x\right)^2+1}\,dx$$

Let:

$$\frac{2}{3}x=\sinh(u)\implies dx=\frac{3}{2}\cosh(u)\,du$$

And we now have:

$$I=\frac{9}{2}\int \cosh^2(u)\,du=\frac{9}{4}\int \cosh(2u)+1\,du=\frac{9}{4}\sinh(u)\cosh(u)+\frac{9}{4}u+C$$

$$I=\frac{1}{2}x\sqrt{4x^2+9}+\frac{9}{4}\arsinh\left(\frac{2}{3}x\right)+C$$
 
$$\displaystyle I=\frac{1}{2}x\sqrt{4x^2+9}+\frac{9}{4}\arsinh\left(\frac{2}{3}x\right)+C$$
$$\sinh\left(x\right)=y=\frac{e^{x}-e^{-x}}{2}$$
$$2y=e^{x}-e^{-x}\ \ \implies\ \ e^{2x}-2ye^{x}-1=0 $$
?
How does $\displaystyle\frac{9}{4}\arsinh\left(\frac{2}{3}x\right) $ become $\displaystyle\frac{9\ln\left({\sqrt{4x^2+9}}\right)+2x}{4 }$
 
karush said:
$$\displaystyle I=\frac{1}{2}x\sqrt{4x^2+9}+\frac{9}{4}\arsinh\left(\frac{2}{3}x\right)+C$$
$$\sinh\left(x\right)=y=\frac{e^{x}-e^{-x}}{2}$$
$$2y=e^{x}-e^{-x}\ \ \implies\ \ e^{2x}-2ye^{x}-1=0 $$
?
How does $\displaystyle\frac{9}{4}\arsinh\left(\frac{2}{3}x\right) $ become $\displaystyle\frac{9\ln\left({\sqrt{4x^2+9}}\right)+2x}{4 }$

Well, in short, it doesn't...

$\displaystyle \begin{align*} y &= \frac{9}{4}\,\textrm{arsinh}\,{\left( \frac{2}{3}\,x \right) } \\ \frac{4}{9}\,y &= \textrm{arsinh}\,{ \left( \frac{2}{3}\,x \right) } \\ \sinh{ \left( \frac{4}{9}\,y \right) } &= \frac{2}{3}\,x \\ \frac{1}{2}\,\left( \mathrm{e}^{\frac{4}{9}\,y} - \mathrm{e}^{-\frac{4}{9}\,y} \right) &= \frac{2}{3}\,x \\ \mathrm{e}^{\frac{4}{9}\,y} - \mathrm{e}^{-\frac{4}{9}\,y} &= \frac{4}{3}\,x \\ \mathrm{e}^{\frac{4}{9}\,y} \,\left( \mathrm{e}^{\frac{4}{9}\,y} - \mathrm{e}^{-\frac{4}{9}\,y} \right) &= \frac{4}{3}\,x\,\mathrm{e}^{\frac{4}{9}\,y} \\ \left( \mathrm{e}^{\frac{4}{9}\,y} \right) ^2 - \frac{4}{3}\,x\,\mathrm{e}^{\frac{4}{9}\,y} -1 &= 0 \\ \left( \mathrm{e}^{\frac{4}{9}\,y} \right) ^2 - \frac{4}{3}\,x\,\mathrm{e}^{\frac{4}{9}\,y} + \left(- \frac{2}{3}\,x \right) ^2 - \left( -\frac{2}{3}\,x \right) ^2 - 1 &= 0 \\ \left( \mathrm{e}^{\frac{4}{9}\,y} - \frac{2}{3}\,x \right) ^2 - \frac{4}{9}\,x^2 - 1 &= 0 \\ \left( \mathrm{e}^{\frac{4}{9}\,y } - \frac{2}{3} \,x \right) ^2 &= \frac{4}{9}\,x^2 + 1 \\ \left( \mathrm{e}^{\frac{4}{9}\,y} - \frac{2}{3} \, x \right) ^2 &= \frac{4\,x^2 + 9}{9} \\ \mathrm{e}^{\frac{4}{9}\,y} - \frac{2}{3}\,x &= \pm \frac{\sqrt{4\,x^2 + 9}}{3} \\ \mathrm{e}^{\frac{4}{9}\,y} &= \frac{2\,x \pm \sqrt{4\,x^2 + 9}}{3} \\ \frac{4}{9} \, y &= \ln{ \left( \frac{2\,x \pm \sqrt{ 4\,x^2 + 9 }}{3} \right) } \\ y &= \frac{9\ln{ \left( \frac{2\,x \pm \sqrt{ 4 \, x^2 + 9 }}{3} \right) }}{4} \end{align*}$

and in order for this to exist, we require $\displaystyle \begin{align*} y = \frac{9\ln{\left( \frac{2\,x + \sqrt{4\,x^2 + 9}}{3} \right) }}{4} \end{align*}$.
 
good grief😎😎😎😎

thanks heavy though,
I tried and tried then cried.

where do you do your latex??
looks like math magic output

The TI Inspire gave...
$$\int \sqrt{9+4{x}^{2 }} dx
= \frac{9\ln\left({\sqrt{4{x}^{2}+9}}+2x\right)}{4 }
-\frac{x\sqrt{4{x}^{2}+9}}{2}$$
 
Last edited:
$$\int\sqrt{9+4x^2}\,\mathrm dx$$

$$\dfrac32\sinh(u)=x,\quad u=\sinh^{-1}\left(\dfrac{2x}{3}\right)$$

$$\dfrac32\cosh(u)\,\mathrm du=\mathrm dx$$

$$\dfrac92\int\sqrt{1+\sinh^2(u)}\cosh(u)\,\mathrm du$$

$$=\dfrac92\int\cosh^2(u)\,\mathrm du$$

$$=\dfrac92\int\dfrac{e^{2x}+e^{-2x}}{4}+\dfrac12\,\mathrm du$$

$$=\dfrac94\int\cosh(2u)+1\,\mathrm du=\dfrac{9\sinh(2u)}{8}+\dfrac{9u}{4}+C_0$$

$$=\dfrac98\cdot2\cdot\dfrac{2x}{3}\cdot\dfrac{\sqrt{9+4x^2}}{3}+\dfrac{9\sinh^{-1}\left(\dfrac{2x}{3}\right)}{4}+C_0$$

$$=\dfrac{x\sqrt{9+4x^2}}{2}+\dfrac{9\ln\left(\sqrt{\left(\dfrac{2x}{3}\right)^2+1}+\dfrac{2x}{3}\right)}{4}+C_0$$

$$=\dfrac{x\sqrt{9+4x^2}}{2}+\dfrac{9\ln\left(\dfrac{\sqrt{4x^2+9}}{3}+\dfrac{2x}{3}\right)}{4}+C_0$$

$$=\dfrac{x\sqrt{9+4x^2}}{2}+\dfrac{9\ln\left(\sqrt{4x^2+9}+2x\right)}{4}-\dfrac{9\ln(3)}{4}+C_0$$

$$\int\sqrt{9+4x^2}\,\mathrm dx=\dfrac{x\sqrt{9+4x^2}}{2}+\dfrac{9\ln\left(\sqrt{4x^2+9}+2x\right)}{4}+C$$

Can you show that $\cosh\left(\sinh^{-1}(x)\right)=\sqrt{x^2+1}$ and that $\sinh^{-1}(x)=\ln(\sqrt{x^2+1}+x)$ ?
 
Keep going. Recall that $e^{\ln(x)}=x$.
 
  • #10
$sin^{-1} {x} =\ln\left({\sqrt{{x}^{2}+1 }+x}\right)$
$\displaystyle \frac{e^{\ln\left({\sqrt{{x}^{2}+1 }+x}\right)}
+e^{-\ln\left({\sqrt{{x}^{2}+1 }+x}\right)}}{2}
\implies
\frac{\sqrt{{x}^{2}+1}+x+\sqrt{{x}^{2}+1}-x }{2}
\implies \sqrt{{x}^{2}+1} $
 
  • #11
$$\cosh\left(\sinh^{-1}(x)\right)=\dfrac{e^{\ln(\sqrt{x^2+1}+x)}+e^{-\ln(\sqrt{x^2+1}+x)}}{2}=\dfrac{e^{\ln(\sqrt{x^2+1}+x)}+\dfrac{1}{e^{\ln(\sqrt{x^2+1}+x)}}}{2}$$

$$=\dfrac{\sqrt{x^2+1}+x+\dfrac{1}{\sqrt{x^2+1}+x}}{2}$$

Can you get it from there?
 
  • #12
karush said:
$sin^{-1} {x} =\ln\left({\sqrt{{x}^{2}+1 }+x}\right)$
$\displaystyle \frac{e^{\ln\left({\sqrt{{x}^{2}+1 }+x}\right)}
+e^{-\ln\left({\sqrt{{x}^{2}+1 }+x}\right)}}{2}
\implies
\frac{\sqrt{{x}^{2}+1}+x+\sqrt{{x}^{2}+1}-x }{2}
\implies \sqrt{{x}^{2}+1} $
That's it with some steps omitted. Good work (though I'm not clear exactly how you arrived at the above).
 
  • #13
I used the conjugate on the second term
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
984
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K