How to Evaluate the Integral of the Square Root of 9+4x^2?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
SUMMARY

The integral of the square root of the expression \(9 + 4x^2\) can be evaluated using hyperbolic functions and trigonometric substitutions. The final result is given by the formula \(I = \frac{1}{2}x\sqrt{4x^2 + 9} + \frac{9}{4}\arsinh\left(\frac{2}{3}x\right) + C\). The discussion highlights the transformation of the inverse hyperbolic sine function into a logarithmic form, specifically \(\frac{9}{4}\arsinh\left(\frac{2}{3}x\right) = \frac{9\ln\left(\sqrt{4x^2 + 9} + 2x\right)}{4}\). Various substitutions and identities, including \(x = \frac{3}{2}\sinh(u)\) and \(dx = \frac{3}{2}\cosh(u) du\), are utilized to simplify the integral.

PREREQUISITES
  • Understanding of integral calculus, specifically techniques for evaluating integrals involving square roots.
  • Familiarity with hyperbolic functions and their properties.
  • Knowledge of trigonometric identities and substitutions.
  • Ability to manipulate logarithmic and inverse hyperbolic functions.
NEXT STEPS
  • Study the properties and applications of hyperbolic functions in calculus.
  • Learn about trigonometric substitutions for integrals involving square roots.
  • Explore the derivation and applications of inverse hyperbolic functions.
  • Practice evaluating integrals using different substitution techniques, including \(u\)-substitution.
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on calculus, integral evaluation, and mathematical analysis. This discussion is beneficial for anyone looking to deepen their understanding of hyperbolic functions and their applications in integration.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Evaluate $\int\sqrt{9+4{x}^{2}}\ dx$
$$
\displaystyle
x= \frac{3}{2}\tan(u)
\ \ dx= \sec^2(u)
$$
 
Last edited:
Physics news on Phys.org
karush said:
Evaluate $\int\sqrt{9+4{x}^{2}}\ dx$
$$
\displaystyle
x= \frac{3}{2}\sec(x)
\ \ dx= \frac{3\sin\left({x}\right)}{2\cos^2 \left({x}\right)}
$$
Then

$\displaystyle \int\sqrt{9+4 \left( \frac{3}{2} \sec{(x) }\right)^2 } \ dx
\implies 3\int\tan\left({x}\right)\ dx
$
So far?.

$\tan(x) = \dfrac{\sin(x)}{\cos(x)}$ and $\frac{d}{dx} \cos(x) = - \ sin (x)$ you should now be able to proceed
 
I changed this looks easier
$$
\displaystyle
x= \frac{3}{2}\tan(u)
\ \ dx= \frac{3}{2}\sec^2(u)
$$
 
I would write:

$$I=\int \sqrt{9+4x^2}\,dx=3\int \sqrt{\left(\frac{2}{3}x\right)^2+1}\,dx$$

Let:

$$\frac{2}{3}x=\sinh(u)\implies dx=\frac{3}{2}\cosh(u)\,du$$

And we now have:

$$I=\frac{9}{2}\int \cosh^2(u)\,du=\frac{9}{4}\int \cosh(2u)+1\,du=\frac{9}{4}\sinh(u)\cosh(u)+\frac{9}{4}u+C$$

$$I=\frac{1}{2}x\sqrt{4x^2+9}+\frac{9}{4}\arsinh\left(\frac{2}{3}x\right)+C$$
 
$$\displaystyle I=\frac{1}{2}x\sqrt{4x^2+9}+\frac{9}{4}\arsinh\left(\frac{2}{3}x\right)+C$$
$$\sinh\left(x\right)=y=\frac{e^{x}-e^{-x}}{2}$$
$$2y=e^{x}-e^{-x}\ \ \implies\ \ e^{2x}-2ye^{x}-1=0 $$
?
How does $\displaystyle\frac{9}{4}\arsinh\left(\frac{2}{3}x\right) $ become $\displaystyle\frac{9\ln\left({\sqrt{4x^2+9}}\right)+2x}{4 }$
 
karush said:
$$\displaystyle I=\frac{1}{2}x\sqrt{4x^2+9}+\frac{9}{4}\arsinh\left(\frac{2}{3}x\right)+C$$
$$\sinh\left(x\right)=y=\frac{e^{x}-e^{-x}}{2}$$
$$2y=e^{x}-e^{-x}\ \ \implies\ \ e^{2x}-2ye^{x}-1=0 $$
?
How does $\displaystyle\frac{9}{4}\arsinh\left(\frac{2}{3}x\right) $ become $\displaystyle\frac{9\ln\left({\sqrt{4x^2+9}}\right)+2x}{4 }$

Well, in short, it doesn't...

$\displaystyle \begin{align*} y &= \frac{9}{4}\,\textrm{arsinh}\,{\left( \frac{2}{3}\,x \right) } \\ \frac{4}{9}\,y &= \textrm{arsinh}\,{ \left( \frac{2}{3}\,x \right) } \\ \sinh{ \left( \frac{4}{9}\,y \right) } &= \frac{2}{3}\,x \\ \frac{1}{2}\,\left( \mathrm{e}^{\frac{4}{9}\,y} - \mathrm{e}^{-\frac{4}{9}\,y} \right) &= \frac{2}{3}\,x \\ \mathrm{e}^{\frac{4}{9}\,y} - \mathrm{e}^{-\frac{4}{9}\,y} &= \frac{4}{3}\,x \\ \mathrm{e}^{\frac{4}{9}\,y} \,\left( \mathrm{e}^{\frac{4}{9}\,y} - \mathrm{e}^{-\frac{4}{9}\,y} \right) &= \frac{4}{3}\,x\,\mathrm{e}^{\frac{4}{9}\,y} \\ \left( \mathrm{e}^{\frac{4}{9}\,y} \right) ^2 - \frac{4}{3}\,x\,\mathrm{e}^{\frac{4}{9}\,y} -1 &= 0 \\ \left( \mathrm{e}^{\frac{4}{9}\,y} \right) ^2 - \frac{4}{3}\,x\,\mathrm{e}^{\frac{4}{9}\,y} + \left(- \frac{2}{3}\,x \right) ^2 - \left( -\frac{2}{3}\,x \right) ^2 - 1 &= 0 \\ \left( \mathrm{e}^{\frac{4}{9}\,y} - \frac{2}{3}\,x \right) ^2 - \frac{4}{9}\,x^2 - 1 &= 0 \\ \left( \mathrm{e}^{\frac{4}{9}\,y } - \frac{2}{3} \,x \right) ^2 &= \frac{4}{9}\,x^2 + 1 \\ \left( \mathrm{e}^{\frac{4}{9}\,y} - \frac{2}{3} \, x \right) ^2 &= \frac{4\,x^2 + 9}{9} \\ \mathrm{e}^{\frac{4}{9}\,y} - \frac{2}{3}\,x &= \pm \frac{\sqrt{4\,x^2 + 9}}{3} \\ \mathrm{e}^{\frac{4}{9}\,y} &= \frac{2\,x \pm \sqrt{4\,x^2 + 9}}{3} \\ \frac{4}{9} \, y &= \ln{ \left( \frac{2\,x \pm \sqrt{ 4\,x^2 + 9 }}{3} \right) } \\ y &= \frac{9\ln{ \left( \frac{2\,x \pm \sqrt{ 4 \, x^2 + 9 }}{3} \right) }}{4} \end{align*}$

and in order for this to exist, we require $\displaystyle \begin{align*} y = \frac{9\ln{\left( \frac{2\,x + \sqrt{4\,x^2 + 9}}{3} \right) }}{4} \end{align*}$.
 
good grief😎😎😎😎

thanks heavy though,
I tried and tried then cried.

where do you do your latex??
looks like math magic output

The TI Inspire gave...
$$\int \sqrt{9+4{x}^{2 }} dx
= \frac{9\ln\left({\sqrt{4{x}^{2}+9}}+2x\right)}{4 }
-\frac{x\sqrt{4{x}^{2}+9}}{2}$$
 
Last edited:
$$\int\sqrt{9+4x^2}\,\mathrm dx$$

$$\dfrac32\sinh(u)=x,\quad u=\sinh^{-1}\left(\dfrac{2x}{3}\right)$$

$$\dfrac32\cosh(u)\,\mathrm du=\mathrm dx$$

$$\dfrac92\int\sqrt{1+\sinh^2(u)}\cosh(u)\,\mathrm du$$

$$=\dfrac92\int\cosh^2(u)\,\mathrm du$$

$$=\dfrac92\int\dfrac{e^{2x}+e^{-2x}}{4}+\dfrac12\,\mathrm du$$

$$=\dfrac94\int\cosh(2u)+1\,\mathrm du=\dfrac{9\sinh(2u)}{8}+\dfrac{9u}{4}+C_0$$

$$=\dfrac98\cdot2\cdot\dfrac{2x}{3}\cdot\dfrac{\sqrt{9+4x^2}}{3}+\dfrac{9\sinh^{-1}\left(\dfrac{2x}{3}\right)}{4}+C_0$$

$$=\dfrac{x\sqrt{9+4x^2}}{2}+\dfrac{9\ln\left(\sqrt{\left(\dfrac{2x}{3}\right)^2+1}+\dfrac{2x}{3}\right)}{4}+C_0$$

$$=\dfrac{x\sqrt{9+4x^2}}{2}+\dfrac{9\ln\left(\dfrac{\sqrt{4x^2+9}}{3}+\dfrac{2x}{3}\right)}{4}+C_0$$

$$=\dfrac{x\sqrt{9+4x^2}}{2}+\dfrac{9\ln\left(\sqrt{4x^2+9}+2x\right)}{4}-\dfrac{9\ln(3)}{4}+C_0$$

$$\int\sqrt{9+4x^2}\,\mathrm dx=\dfrac{x\sqrt{9+4x^2}}{2}+\dfrac{9\ln\left(\sqrt{4x^2+9}+2x\right)}{4}+C$$

Can you show that $\cosh\left(\sinh^{-1}(x)\right)=\sqrt{x^2+1}$ and that $\sinh^{-1}(x)=\ln(\sqrt{x^2+1}+x)$ ?
 
Keep going. Recall that $e^{\ln(x)}=x$.
 
  • #10
$sin^{-1} {x} =\ln\left({\sqrt{{x}^{2}+1 }+x}\right)$
$\displaystyle \frac{e^{\ln\left({\sqrt{{x}^{2}+1 }+x}\right)}
+e^{-\ln\left({\sqrt{{x}^{2}+1 }+x}\right)}}{2}
\implies
\frac{\sqrt{{x}^{2}+1}+x+\sqrt{{x}^{2}+1}-x }{2}
\implies \sqrt{{x}^{2}+1} $
 
  • #11
$$\cosh\left(\sinh^{-1}(x)\right)=\dfrac{e^{\ln(\sqrt{x^2+1}+x)}+e^{-\ln(\sqrt{x^2+1}+x)}}{2}=\dfrac{e^{\ln(\sqrt{x^2+1}+x)}+\dfrac{1}{e^{\ln(\sqrt{x^2+1}+x)}}}{2}$$

$$=\dfrac{\sqrt{x^2+1}+x+\dfrac{1}{\sqrt{x^2+1}+x}}{2}$$

Can you get it from there?
 
  • #12
karush said:
$sin^{-1} {x} =\ln\left({\sqrt{{x}^{2}+1 }+x}\right)$
$\displaystyle \frac{e^{\ln\left({\sqrt{{x}^{2}+1 }+x}\right)}
+e^{-\ln\left({\sqrt{{x}^{2}+1 }+x}\right)}}{2}
\implies
\frac{\sqrt{{x}^{2}+1}+x+\sqrt{{x}^{2}+1}-x }{2}
\implies \sqrt{{x}^{2}+1} $
That's it with some steps omitted. Good work (though I'm not clear exactly how you arrived at the above).
 
  • #13
I used the conjugate on the second term
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
955
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K