MHB How to Expand and Simplify the Expression of Kronecker Delta?

  • Thread starter Thread starter jasonmcc
  • Start date Start date
  • Tags Tags
    Delta Expanding
jasonmcc
Messages
10
Reaction score
0
Hi, I'm working on a problem stated as:
Expand the following expression and simplify where possible
$$
\delta_{ij}\delta_{ij}
$$

I'm pretty sure this is correct, but not sure that I am satisfying the expand question. I'm not up to speed in linear algebra (taking a continuum mechanics course) - the question could be asking for $\hat{e}$ or matrix type expansion...

my solution:
\begin{alignat}{3}
\delta_{ij}\delta_{ij} & = & \delta_{ij}\delta_{ji}\\
& = & \delta_{ii}\\
& = & 3
\end{alignat}

Any suggestions for how to expand - or does this answer the question?
Thanks, Jason
 
Physics news on Phys.org
Your working is correct if you're in 3 dimensions and you're using the Einstein summation convention.
 
Thanks. What do you think they mean by "Expand", then?
 
When you expand a sum like that, you're writing out every term, essentially. And then because they combine as you've shown, it collapses down to a nice compact number.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top