MHB How to find angle between two vectors, given their spherical co-ordinates?

Click For Summary
The discussion centers on finding the angle between two vectors given their spherical coordinates, using the formula involving the arccosine function. Participants clarify that the Cartesian coordinates for points P1 and P2 can be expressed in terms of spherical coordinates, and the inner product can be used to derive the angle. There is some confusion regarding the notation for angles, specifically the use of theta and phi, which leads to differing interpretations of the Cartesian coordinates. A suggestion is made to switch the angles in the formula to align with the correct notation for proving the result. The thread emphasizes the need for clarity in notation to successfully apply the formula.
WMDhamnekar
MHB
Messages
376
Reaction score
28
1591026789994.png


I know that $\arccos{(\cos{\phi_1}\cos{\phi_2}+\sin{\phi_1}\sin{\phi_2}\cos{(\theta_2-\theta_1)})}=\gamma$ But how can i answer the above question? If any member knows the proof of this formula may reply to this question with correct proof.
 
Last edited:
Physics news on Phys.org
Dhamnekar Winod said:
https://www.physicsforums.com/attachments/10317

I know that $\arccos{(\cos{\phi_1}\cos{\phi_2}+\sin{\phi_1}\sin{\phi_2}\cos{(\theta_2-\theta_1)})}=\gamma$ But how can i answer the above question? If any member knows the proof of this formula may reply to this question with correct proof.
The Cartesian coordinates of $P_1$ are $(\rho_1\cos\theta_1, \rho_1\sin\theta_1\cos\phi_1,\rho_1\sin\theta_1\sin\phi_1)$, and similarly for $P_2$. Take the inner product, and use the fact that $\def\bv{\mathbf{v}} \langle\bv_1,\bv_2\rangle = |\bv_1||\bv_2|\cos\gamma.$
 
Opalg said:
The Cartesian coordinates of $P_1$ are $(\rho_1\cos\theta_1, \rho_1\sin\theta_1\cos\phi_1,\rho_1\sin\theta_1\sin\phi_1)$, and similarly for $P_2$. Take the inner product, and use the fact that $\def\bv{\mathbf{v}} \langle\bv_1,\bv_2\rangle = |\bv_1||\bv_2|\cos\gamma.$
In my opinion, the Cartesian co-ordinates of $P_1,P_2$ are as follows:
1591032657425.png


So your answer differs from the above answer for Cartesian co-ordinates of $P_1, P_2$ using appropriate $\rho_i, \theta_i,\phi_i$ where i=1,2.
 
Dhamnekar Winod said:
So your answer differs from the above answer for Cartesian co-ordinates of $P_1, P_2$ using appropriate $\rho_i, \theta_i,\phi_i$ where i=1,2.
The only difference is that I use $\theta$ and $\phi$ where you are using $\phi$ and $\theta$. If you switch the $\theta$s and $\phi$s in my hint then you should be able to prove the result.
 
@Opalg, Do you mean inner product=$\vec{v_1} \cdot \vec{v_2}=\left\langle v_1,v_2 \right\rangle$
 
Yes. :)
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
6K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 7 ·
Replies
7
Views
2K