MHB How to Find Cosine from Secant Using Trig Identities?

courtbits
Messages
15
Reaction score
0
If $$\cos(\pi/3)= \frac{1}{2}$$, find $$\sec(\pi-\pi/3)$$

Someone really give me step-by-step explanation.
I really don't know what identity to use, and no idea how to get cosine to secant.
Please, it would help. I do have more questions if you help me dissect this problem. XD
Thanks so much in advance!
 
Mathematics news on Phys.org
courtbits said:
If $$\cos(\pi/3)= \frac{1}{2}$$, find $$\sec(\pi-\pi/3)$$

Someone really give me step-by-step explanation.
I really don't know what identity to use, and no idea how to get cosine to secant.
Please, it would help. I do have more questions if you help me dissect this problem. XD
Thanks so much in advance!

No idea how to get cosine from secant? By DEFINITION the secant is the reciprocal of the cosine...

$\displaystyle \begin{align*} \frac{1}{\cos{(x)}} \equiv \sec{(x)} \end{align*}$
 
Prove It said:
No idea how to get cosine from secant? By DEFINITION the secant is the reciprocal of the cosine...

$\displaystyle \begin{align*} \frac{1}{\cos{(x)}} \equiv \sec{(x)} \end{align*}$

Ok..
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top