How to find set from following condition.

  • Context: MHB 
  • Thread starter Thread starter rajemessage
  • Start date Start date
  • Tags Tags
    Condition Set
Click For Summary
SUMMARY

The discussion focuses on determining the number of valid sets and combinations for the numbers {1, 2, 3} under specific conditions. The user seeks to understand how to calculate the total sets when each number has defined states of existence and relational constraints. The key conclusion is that the problem can be approached through combinatorial analysis, considering the states of each number and their interrelations. The user is advised to clarify their original problem statement for precise guidance.

PREREQUISITES
  • Understanding of combinatorial mathematics
  • Familiarity with set theory and subsets
  • Knowledge of permutations and combinations
  • Basic grasp of logical conditions in mathematical problems
NEXT STEPS
  • Study combinatorial formulas for calculating permutations and combinations
  • Explore the concept of power sets and their applications
  • Learn about conditional probability and its relevance to set theory
  • Investigate advanced combinatorial techniques for larger sets of numbers
USEFUL FOR

Mathematicians, computer scientists, and anyone interested in combinatorial problem-solving and set theory applications.

rajemessage
Messages
13
Reaction score
0
how can i find the sets from following situation.
i have three numbers,{1 2 3} which will always be in this order {123},
i want to find out number of cases can be made.

but 2 can come at frist position that is before 1 or at second position or at
third position that is after 3.
and all are optional.

please solve this question with forumulas so that i can find set of bignumbers too.

yours sincerly
 
Physics news on Phys.org
If you have $n$ objects, then there are $n!$ ways to order them. You have $n$ choices for the first position, $n-1$ for the second and so on.
 
rajemessage said:
how can i find the sets from following situation.
i have three numbers,{1 2 3} which will always be in this order {123},
i want to find out number of cases can be made.

but 2 can come at frist position that is before 1 or at second position or at
third position that is after 3.
and all are optional.

please solve this question with forumulas so that i can find set of bignumbers too.

yours sincerly

Your problem statement is self-contradictory. The numbers cannot always be in the order $\{1,2,3\}$ if you're allowing $2$ to be at the first position. Or are you allowing the order to "wrap around"? In that case, you could have $\{1,2,3\}, \{2,3,1\}, \{3,1,2\}$, so there are $n$ possibilities.

Or are you asking how many permutations of the set there are? If so, MarkFL's answer is correct.

Or are you asking how many subsets of $\{1,2,3\}$ there are (or what is the power set)? If so, then think about for any given subset, whether you're going to include an element or not, and that'll get you going in the right direction.

It would be very helpful if you could please give us the original problem statement, word-for-word.
 
Ackbach said:
Your problem statement is self-contradictory. The numbers cannot always be in the order $\{1,2,3\}$ if you're allowing $2$ to be at the first position. Or are you allowing the order to "wrap around"? In that case, you could have $\{1,2,3\}, \{2,3,1\}, \{3,1,2\}$, so there are $n$ possibilities.

Or are you asking how many permutations of the set there are? If so, MarkFL's answer is correct.

Or are you asking how many subsets of $\{1,2,3\}$ there are (or what is the power set)? If so, then think about for any given subset, whether you're going to include an element or not, and that'll get you going in the right direction.

It would be very helpful if you could please give us the original problem statement, word-for-word.

yes 123 can not be in this order if i change the position of 2, basically it is my condition.

i am re writing the same problem with conditions.

i want to find out set/case in following situation.

there are three number.{1,2,3}

"1" can have three states,(it will not exist,it will exist and it will be always less than "3")

"2" can have four states, it can be less than "1" , greater than "1" and less than "3", greater than "3" ,existing ,not existing.

"3" can have three states,(not exist,exist and it will be always greater than "1")

"all numbers 1,2,3 are optional".

Q1) how many sets will be there
Q2) what will be that sets/combination
Q3) how to find condition based sets for big number like above

yours sincerely
 

Similar threads

  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 62 ·
3
Replies
62
Views
4K
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K