MHB How to Find the Directional Derivative of a Function at a Given Point?

  • Thread starter Thread starter Fantini
  • Start date Start date
  • Tags Tags
    Derivatives
Click For Summary
To find the directional derivative of the function V(x,y) = x^3 - 3xy + 4y^2 at the point P(2,1) in the direction of the unit vector defined by the angle θ = π/6, the gradient is calculated as ∇V(2,1) = (9, 2). The directional derivative is then computed using the formula D_u V(2,1) = ∇V(2,1) · u, where u = (cos(θ), sin(θ)). The correct result is D_u V(2,1) = 1 + 4.5√3, which arises from directly multiplying the gradient components by the cosine and sine of the angle. The confusion stemmed from misinterpreting the angle's context, as it specifically relates to the direction vector rather than a general unit vector.
Fantini
Gold Member
MHB
Messages
267
Reaction score
0
Here's the problem:

Find the directional derivative of the function $V(x,y) = x^3 -3xy +4y^2$ at the point $P(2,1)$ in the direction of the unit vector $\vec{u}$ given by the angle $\theta = \pi /6$.

So I found the gradient of the function $$\nabla V(x,y) = (3x^2 -3y, 8y -3x),$$ and then at the point desired: $$\nabla V(2,1) = (3(2)^2 -3(1), 8(1) -3(2)) = (12-3, 8-6) = (9,2).$$ Single he gave me the angle, I can find it using the scalar product definition: $D_u V(2,1) = | \nabla V(2,1) | \cdot \cos \theta$, which means $$D_u V(2,1) = \sqrt{ 9^2 +2^2} \cdot \frac{\sqrt{3}}{2} = \sqrt{85} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{255}}{2}.$$

The problem is that the answer is $D_u V(2,1) = 1 + 4.5 \sqrt{3}$ which is simply multiplying each of the gradient's coordinate by the cosine and summing. I disagree with it entirely; if the vector wasn't given, there's no way to do the scalar product by multiplying and summing the coordinates, so we have to use the other form.
 
Physics news on Phys.org
Fantini said:
Here's the problem:

Find the directional derivative of the function $V(x,y) = x^3 -3xy +4y^2$ at the point $P(2,1)$ in the direction of the unit vector $\vec{u}$ given by the angle $\theta = \pi /6$.

So I found the gradient of the function $$\nabla V(x,y) = (3x^2 -3y, 8y -3x),$$ and then at the point desired: $$\nabla V(2,1) = (3(2)^2 -3(1), 8(1) -3(2)) = (12-3, 8-6) = (9,2).$$ Single he gave me the angle, I can find it using the scalar product definition: $D_u V(2,1) = | \nabla V(2,1) | \cdot \cos \theta$, which means $$D_u V(2,1) = \sqrt{ 9^2 +2^2} \cdot \frac{\sqrt{3}}{2} = \sqrt{85} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{255}}{2}.$$

The problem is that the answer is $D_u V(2,1) = 1 + 4.5 \sqrt{3}$ which is simply multiplying each of the gradient's coordinate by the cosine and summing. I disagree with it entirely; if the vector wasn't given, there's no way to do the scalar product by multiplying and summing the coordinates, so we have to use the other form.
I believe that the unit vector you look for is

$\vec{u} = < \cos \theta, \sin \theta>$

BTW - with your definition $\theta$, $\theta$ is the angle between $\nabla V(2,1) = <9,2>$ and the unit vector $<\dfrac{\sqrt{3}}{2},\dfrac{1}{2}>$ and not $\theta = \dfrac{\pi}{6}$
 
Last edited:
Fantini said:
Single he gave me the angle, I can find it using the scalar product definition: $D_u V(2,1) = | \nabla V(2,1) | \cdot \cos \theta$, which means $$D_u V(2,1) = \sqrt{ 9^2 +2^2} \cdot \frac{\sqrt{3}}{2} = \sqrt{85} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{255}}{2}.$$

What's going on here? The direction vector is \(\mathbf{u} = \cos\theta\,\mathbf{i} + \sin\theta\,\mathbf{j} = \frac{\sqrt3}2\mathbf{i} + \frac12\mathbf{j}\), so

\[D_{\mathbf u}V(x, y) = \nabla V(x,y)\cdot\mathbf{u}\]

\[=\left(3x^2-3y\right)\cdot\frac{\sqrt3}2+\left(8y-3x\right)\cdot\frac12\]

\[\Rightarrow D_{\mathbf u}V(2,1) = \frac{9\sqrt3}2 + 1.\]
 
I supposed I misread the question then. What I did was assume he spoke of a general unit vector giving the angle between it and the gradient as $\theta = \pi/6.$ My bad then. Thanks for clearing it up! :D
 
A "general unit vector giving the angle between it and the gradient as \theta = \pi/6"?
There is only one such vector!
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
3
Views
2K
Replies
4
Views
4K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K