How to Find the Gradient of ln|r|?

  • Context: MHB 
  • Thread starter Thread starter Logan Land
  • Start date Start date
  • Tags Tags
    Gradient Ln
Click For Summary
SUMMARY

The gradient of the function f = ln|r| is calculated using the chain rule, resulting in the expression ∇f = (x,y,z)/√(x²+y²+z²) = r̂/r². The discussion clarifies that the gradient of 1/r is given by ∇(1/r) = -r/r³. Participants emphasized the importance of correctly applying partial derivatives and the chain rule in vector calculus to derive these gradients accurately.

PREREQUISITES
  • Understanding of vector calculus concepts, particularly gradients
  • Familiarity with the chain rule in differentiation
  • Knowledge of partial derivatives and their notation
  • Basic understanding of the Euclidean norm in three-dimensional space
NEXT STEPS
  • Study the application of the chain rule in vector calculus
  • Learn about the properties and applications of gradients in physics and engineering
  • Explore the derivation of gradients for other scalar fields
  • Investigate the implications of gradients in optimization problems
USEFUL FOR

Students and professionals in mathematics, physics, and engineering who are looking to deepen their understanding of vector calculus and its applications in real-world scenarios.

Logan Land
Messages
83
Reaction score
0
To solve the gradient f when f = ln |r| do I start with differentiating each x,y,z term of the vector?Like ln|x| ln|y|...etc.

View attachment 4146
 

Attachments

  • rsz_2015-03-24_093723.jpg
    rsz_2015-03-24_093723.jpg
    39.1 KB · Views: 209
Physics news on Phys.org
(ATTEMPT)

gradient(ln||^r||)

=((d/dx)x*+(d/dy)y*+(d/dz)z*)(ln||r||)
=(x/r^2)x*+(y/r^2)y*+(z/r^2)z*
=(x,y,z)/r^2
=(^r)/r^2

correct?
 
Notice that $\ln(\| {\mathbf r} \|) = \ln (\sqrt{x^2+y^2+z^2})$. You need to use the chain rule for the gradient. I don't understand your notation. :(
 
Fantini said:
Notice that $\ln(\| {\mathbf r} \|) = \ln (\sqrt{x^2+y^2+z^2})$. You need to use the chain rule for the gradient. I don't understand your notation. :(
i tried to follow how I attempted the next question, gradient f if f=1/r
(d/dx)xbar+(d/dy)ybar+(d/dz)zbar * (1/r)
(-x/r^3)xbar+(-y/r^3)ybar+(-z/r^3)zbar
= -(x,y,z)/r^3
=-rbar/r^3thats how I tried but I guess was wrong?
 
d/dx ln(sqrt x^2+y^2+z^2) = x/(x^2+y^2+z^2) d/dy = y/(x^2+y^2+z^2) and d/dz = z/(x^2+y^2+z^2)
so then would it become (x+y+z)/(x^2+y^2+z^2)? which is r*/r^2?
 
Remember the gradient is $$\nabla f = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right).$$ Since we've established $$\frac{\partial f}{\partial x} = \frac{x}{\sqrt{x^2+y^2+z^2}}$$ and likewise for the other partial derivatives, we have $$\nabla f = \frac{(x,y,z)}{\sqrt{x^2+y^2+z^2}} = \frac{{\mathbf r}}{r} = \frac{\widehat{ {\mathbf r}}}{r^2}.$$ :) Hope this helps. What do you mean with 'zbar'?
 
Fantini said:
Remember the gradient is $$\nabla f = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right).$$ Since we've established $$\frac{\partial f}{\partial x} = \frac{x}{\sqrt{x^2+y^2+z^2}}$$ and likewise for the other partial derivatives, we have $$\nabla f = \frac{(x,y,z)}{\sqrt{x^2+y^2+z^2}} = \frac{{\mathbf r}}{r} = \frac{\widehat{ {\mathbf r}}}{r^2}.$$ :) Hope this helps. What do you mean with 'zbar'?

I did not understand. gradiente (1/r) = - r/ r^3 ??
 
Patricio Lima said:
I did not understand. gradiente (1/r) = - r/ r^3 ??

Hi Patricio Lima, welcome to MHB, (Wave)

We had here that:
$$\operatorname{grad} \ln\|\mathbf r\| = -\frac{\mathbf r}{r^2}$$
Similarly we can find:
$$\pd {}x \frac 1r = -\frac 1{r^2}\pd r x = -\frac 1{r^2}\pd {} x\sqrt{x^2+y^2+z^2}
= -\frac 1{r^2}\cdot\frac{2x}{2\sqrt{x^2+y^2+z^2}}
= -\frac x{r^3}$$
So that:
$$\operatorname{grad} \frac 1r = -\frac{\mathbf r}{r^3}$$
(Thinking)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K