MHB How to find the integral of a complex number

aruwin
Messages
204
Reaction score
0
Hello.
I am stuck at the third point, that is from 1+i to i. I asked someone to show me his answer but that part of his is different from mine. Is his solution correct?
Here it is:

(i) z = 0 to 1 via z(t) = t with t in [0, 1]:
∫c1 Re(z^2) dz
= ∫(t = 0 to 1) Re(t^2) * 1 dt
= ∫(t = 0 to 1) t^2 dt
= 1/3.

(ii) z = 1 to 1+i via z(t) = 1+it with t in [0, 1]:
∫c2 Re(z^2) dz
= ∫(t = 0 to 1) Re((1 + it)^2) * (i dt)
= ∫(t = 0 to 1) (1 - t^2) * i dt
= i(t - t^3/3) {for t = 0 to 1}
= 2i/3.

(iii) z = 1+i to i via z(t) = t+i with t in [0, 1] and opposite orientation:
∫c3 Re(z^2) dz
= -∫(t = 0 to 1) Re((t+i)^2) * 1 dt
= -∫(t = 0 to 1) (t^2 - 1) dt
= -(t^3/3 - t) {for t = 0 to 1}
= 2/3.

(iv) z = i to 0 via z(t) = it with t in [0, 1] and opposite orientation:
∫c4 Re(z^2) dz
= -∫(t = 0 to 1) Re((it)^2) * i dt
= -∫(t = 0 to 1) -it^2 dt
= i/3.

So, ∫c Re(z^2) dz = 1/3 + 2i/3 + 2/3 + i/3 = 1 + i.
 

Attachments

  • b-1.jpg
    b-1.jpg
    53.9 KB · Views: 98
Last edited:
Physics news on Phys.org
Re: how to find the integral of a complex number

Aha, now I get it! It has an opposite orientation. I got it!
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 2 ·
Replies
2
Views
792
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
3K
Replies
2
Views
2K