MHB How to Find the Volume of a Tetrahedron?

Click For Summary
SUMMARY

The volume of a tetrahedron ABCD with edges AB=1, CD=$\sqrt{3}$, and the distance and angle between skew lines AB and CD being 2 and $\pi/3$ respectively is calculated to be V=1/2. By representing points A, B, C, and D as vectors and applying the scalar triple product, the volume formula simplifies to V=1/6|[C, B, D]|, yielding the final result. The approach of setting vector A to the origin simplifies calculations significantly.

PREREQUISITES
  • Vector representation of points in 3D space
  • Understanding of scalar triple product
  • Knowledge of geometric properties of tetrahedrons
  • Familiarity with angles and distances between skew lines
NEXT STEPS
  • Study the properties of scalar triple products in vector calculus
  • Learn about the geometric interpretation of tetrahedron volumes
  • Explore vector transformations and their applications in geometry
  • Investigate methods for calculating distances between skew lines in 3D
USEFUL FOR

Students and professionals in mathematics, physics, and engineering who are interested in geometric calculations and vector analysis, particularly those working with three-dimensional shapes.

Saitama
Messages
4,244
Reaction score
93
Problem:
Suppose in a tetrahedron ABCD, AB=1; CD=$\sqrt{3}$; the distance and the angle between the skew lines AB and CD are 2 and $\pi/3$ respectively. Find the volume of tetrahedron.

Attempt:
Let the points A,B,C and D be represented by the vectors $\vec{a}, \vec{b}, \vec{c}$ and $\vec{d}$ respectively. Then, as per the question, I have:
$$\left|\vec{b}-\vec{a}\right|=1$$
$$\left|\vec{d}-\vec{c}\right|=\sqrt{3}$$
The line AB can be represented as $\vec{r}=\vec{a}+\lambda (\vec{b}-\vec{a})$ and the line CD can be represented by $\vec{r}=\vec{c}+\mu (\vec{d}-\vec{c})$ where $\lambda$ and $\mu$ are scalars. The angle ($\theta$) between the two lines is given by:
$$\cos\theta=\frac{(\vec{b}-\vec{a})\cdot (\vec{d}-\vec{c})}{\left|\vec{b}-\vec{a}\right| \left|\vec{d}-\vec{c}\right|}$$
$$\Rightarrow \frac{1}{2}=\frac{(\vec{b}-\vec{a})\cdot (\vec{d}-\vec{c})}{\sqrt{3}}$$
$$\Rightarrow (\vec{b}-\vec{a})\cdot (\vec{d}-\vec{c})=\frac{\sqrt{3}}{2}$$
The distance between the two lines is 2 so I have the following relation:
$$\left|\frac{(\vec{a}-\vec{c})\cdot ((\vec{b}-\vec{a})\times (\vec{d}-\vec{c})}{\left|(\vec{b}-\vec{a})\times(\vec{d}-\vec{c})\right|}\right|=2$$
$$\Rightarrow \left|\left[\vec{a}-\vec{c}\,\,\,\, \vec{b}-\vec{a}\,\,\,\, \vec{d}-\vec{c}\right]\right|=3$$

I am clueless about the next step. :confused:

Any help is appreciated. Thanks!
 
Mathematics news on Phys.org
Pranav said:
Problem:
Suppose in a tetrahedron ABCD, AB=1; CD=$\sqrt{3}$; the distance and the angle between the skew lines AB and CD are 2 and $\pi/3$ respectively. Find the volume of tetrahedron.

Attempt:
Let the points A,B,C and D be represented by the vectors $\vec{a}, \vec{b}, \vec{c}$ and $\vec{d}$ respectively. Then, as per the question, I have:
$$\left|\vec{b}-\vec{a}\right|=1$$
$$\left|\vec{d}-\vec{c}\right|=\sqrt{3}$$
The line AB can be represented as $\vec{r}=\vec{a}+\lambda (\vec{b}-\vec{a})$ and the line CD can be represented by $\vec{r}=\vec{c}+\mu (\vec{d}-\vec{c})$ where $\lambda$ and $\mu$ are scalars. The angle ($\theta$) between the two lines is given by:
$$\cos\theta=\frac{(\vec{b}-\vec{a})\cdot (\vec{d}-\vec{c})}{\left|\vec{b}-\vec{a}\right| \left|\vec{d}-\vec{c}\right|}$$
$$\Rightarrow \frac{1}{2}=\frac{(\vec{b}-\vec{a})\cdot (\vec{d}-\vec{c})}{\sqrt{3}}$$
$$\Rightarrow (\vec{b}-\vec{a})\cdot (\vec{d}-\vec{c})=\frac{\sqrt{3}}{2}$$
The distance between the two lines is 2 so I have the following relation:
$$\left|\frac{(\vec{a}-\vec{c})\cdot ((\vec{b}-\vec{a})\times (\vec{d}-\vec{c})}{\left|(\vec{b}-\vec{a})\times(\vec{d}-\vec{c})\right|}\right|=2$$
$$\Rightarrow \left|\left[\vec{a}-\vec{c}\,\,\,\, \vec{b}-\vec{a}\,\,\,\, \vec{d}-\vec{c}\right]\right|=3$$

I am clueless about the next step. :confused:

Any help is appreciated. Thanks!

Hey Pranav! ;)

Shall we pick $\vec a = \vec 0$?
That makes those formulas a bit easier.

Do you also have a formula for the volume of a tetrahedron in terms of those vectors?
 
I like Serena said:
Hey Pranav! ;)

Shall we pick $\vec a = \vec 0$?
That makes those formulas a bit easier.
Completely agreed and I seem to have reached the answer too because of that. :)

Let $\vec{a}=0$. So the formulas I posted above becomes:
$$\left|\vec{b}\right|=1$$
and
$$\left|\left[\vec{c} \vec{b} \vec{d}-\vec{c}\right]\right|=3$$
The above scalar triple product is same as:
$$\left|\left[\vec{c} \vec{b} \vec{d}\right]\right|=3$$
Do you also have a formula for the volume of a tetrahedron in terms of those vectors?
Yes. The volume of tetrahedron in the given case is:
$$V=\frac{1}{6}\left|\left[\vec{c}-\vec{a} \vec{b}-\vec{a} \vec{d}-\vec{a}\right]\right|$$
But since we let $\vec{a}=0$, the above formula becomes:
$$V=\frac{1}{6}\left|\left[\vec{c} \vec{b} \vec{d}\right]\right|=\frac{3}{6}=\frac{1}{2}$$
which is the correct answer.

Thanks a lot ILS! :)
 
Pranav said:
...which is the correct answer.

Thanks a lot ILS! :)

Thank you for taking the time to show how the help given allowed you to resolve the question! (Yes)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 42 ·
2
Replies
42
Views
5K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
886
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
2
Views
1K
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K