How to Find the Volume of a Tetrahedron?

  • Context: MHB 
  • Thread starter Thread starter Saitama
  • Start date Start date
  • Tags Tags
    Tetrahedron Volume
Click For Summary

Discussion Overview

The discussion revolves around finding the volume of a tetrahedron defined by specific lengths and angles between skew lines. Participants explore the mathematical relationships and vector representations involved in calculating the volume, focusing on the application of geometric principles and vector algebra.

Discussion Character

  • Mathematical reasoning, Technical explanation, Exploratory

Main Points Raised

  • One participant outlines the problem and sets up the equations based on the given lengths and angles, using vector representations for points A, B, C, and D.
  • Another participant suggests simplifying the problem by setting one vector to zero, which is agreed upon by others as a helpful approach.
  • Participants discuss the scalar triple product and its relation to the volume of the tetrahedron, with one participant deriving a formula for volume based on the vectors.
  • There is a calculation presented that leads to a proposed volume of 1/2, but it is not universally accepted as the final answer, as the discussion remains open to further exploration.

Areas of Agreement / Disagreement

While some participants express confidence in the calculations leading to a volume of 1/2, there is no explicit consensus on this result, and the discussion remains open for further input and verification.

Contextual Notes

The discussion involves assumptions about vector representations and relies on the properties of scalar triple products. The steps leading to the volume calculation are not fully resolved, leaving room for additional exploration.

Saitama
Messages
4,244
Reaction score
93
Problem:
Suppose in a tetrahedron ABCD, AB=1; CD=$\sqrt{3}$; the distance and the angle between the skew lines AB and CD are 2 and $\pi/3$ respectively. Find the volume of tetrahedron.

Attempt:
Let the points A,B,C and D be represented by the vectors $\vec{a}, \vec{b}, \vec{c}$ and $\vec{d}$ respectively. Then, as per the question, I have:
$$\left|\vec{b}-\vec{a}\right|=1$$
$$\left|\vec{d}-\vec{c}\right|=\sqrt{3}$$
The line AB can be represented as $\vec{r}=\vec{a}+\lambda (\vec{b}-\vec{a})$ and the line CD can be represented by $\vec{r}=\vec{c}+\mu (\vec{d}-\vec{c})$ where $\lambda$ and $\mu$ are scalars. The angle ($\theta$) between the two lines is given by:
$$\cos\theta=\frac{(\vec{b}-\vec{a})\cdot (\vec{d}-\vec{c})}{\left|\vec{b}-\vec{a}\right| \left|\vec{d}-\vec{c}\right|}$$
$$\Rightarrow \frac{1}{2}=\frac{(\vec{b}-\vec{a})\cdot (\vec{d}-\vec{c})}{\sqrt{3}}$$
$$\Rightarrow (\vec{b}-\vec{a})\cdot (\vec{d}-\vec{c})=\frac{\sqrt{3}}{2}$$
The distance between the two lines is 2 so I have the following relation:
$$\left|\frac{(\vec{a}-\vec{c})\cdot ((\vec{b}-\vec{a})\times (\vec{d}-\vec{c})}{\left|(\vec{b}-\vec{a})\times(\vec{d}-\vec{c})\right|}\right|=2$$
$$\Rightarrow \left|\left[\vec{a}-\vec{c}\,\,\,\, \vec{b}-\vec{a}\,\,\,\, \vec{d}-\vec{c}\right]\right|=3$$

I am clueless about the next step. :confused:

Any help is appreciated. Thanks!
 
Mathematics news on Phys.org
Pranav said:
Problem:
Suppose in a tetrahedron ABCD, AB=1; CD=$\sqrt{3}$; the distance and the angle between the skew lines AB and CD are 2 and $\pi/3$ respectively. Find the volume of tetrahedron.

Attempt:
Let the points A,B,C and D be represented by the vectors $\vec{a}, \vec{b}, \vec{c}$ and $\vec{d}$ respectively. Then, as per the question, I have:
$$\left|\vec{b}-\vec{a}\right|=1$$
$$\left|\vec{d}-\vec{c}\right|=\sqrt{3}$$
The line AB can be represented as $\vec{r}=\vec{a}+\lambda (\vec{b}-\vec{a})$ and the line CD can be represented by $\vec{r}=\vec{c}+\mu (\vec{d}-\vec{c})$ where $\lambda$ and $\mu$ are scalars. The angle ($\theta$) between the two lines is given by:
$$\cos\theta=\frac{(\vec{b}-\vec{a})\cdot (\vec{d}-\vec{c})}{\left|\vec{b}-\vec{a}\right| \left|\vec{d}-\vec{c}\right|}$$
$$\Rightarrow \frac{1}{2}=\frac{(\vec{b}-\vec{a})\cdot (\vec{d}-\vec{c})}{\sqrt{3}}$$
$$\Rightarrow (\vec{b}-\vec{a})\cdot (\vec{d}-\vec{c})=\frac{\sqrt{3}}{2}$$
The distance between the two lines is 2 so I have the following relation:
$$\left|\frac{(\vec{a}-\vec{c})\cdot ((\vec{b}-\vec{a})\times (\vec{d}-\vec{c})}{\left|(\vec{b}-\vec{a})\times(\vec{d}-\vec{c})\right|}\right|=2$$
$$\Rightarrow \left|\left[\vec{a}-\vec{c}\,\,\,\, \vec{b}-\vec{a}\,\,\,\, \vec{d}-\vec{c}\right]\right|=3$$

I am clueless about the next step. :confused:

Any help is appreciated. Thanks!

Hey Pranav! ;)

Shall we pick $\vec a = \vec 0$?
That makes those formulas a bit easier.

Do you also have a formula for the volume of a tetrahedron in terms of those vectors?
 
I like Serena said:
Hey Pranav! ;)

Shall we pick $\vec a = \vec 0$?
That makes those formulas a bit easier.
Completely agreed and I seem to have reached the answer too because of that. :)

Let $\vec{a}=0$. So the formulas I posted above becomes:
$$\left|\vec{b}\right|=1$$
and
$$\left|\left[\vec{c} \vec{b} \vec{d}-\vec{c}\right]\right|=3$$
The above scalar triple product is same as:
$$\left|\left[\vec{c} \vec{b} \vec{d}\right]\right|=3$$
Do you also have a formula for the volume of a tetrahedron in terms of those vectors?
Yes. The volume of tetrahedron in the given case is:
$$V=\frac{1}{6}\left|\left[\vec{c}-\vec{a} \vec{b}-\vec{a} \vec{d}-\vec{a}\right]\right|$$
But since we let $\vec{a}=0$, the above formula becomes:
$$V=\frac{1}{6}\left|\left[\vec{c} \vec{b} \vec{d}\right]\right|=\frac{3}{6}=\frac{1}{2}$$
which is the correct answer.

Thanks a lot ILS! :)
 
Pranav said:
...which is the correct answer.

Thanks a lot ILS! :)

Thank you for taking the time to show how the help given allowed you to resolve the question! (Yes)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
2
Views
1K
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K