How to find the wavefunction in this case?

  • Context: Undergrad 
  • Thread starter Thread starter Kashmir
  • Start date Start date
  • Tags Tags
    Wavefunction
Click For Summary

Discussion Overview

The discussion revolves around finding the wavefunction for a two interacting particle system described by a specific Hamiltonian. Participants explore the transformation of the wavefunction from a center of mass and relative coordinates to the original particle coordinates, addressing the challenges posed by operator relations.

Discussion Character

  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant presents a Hamiltonian for a two interacting particle system and describes a reduction to non-interacting fictitious particles, leading to a proposed wavefunction.
  • Another participant suggests that the wavefunction can be expressed in terms of the original coordinates by substituting the center of mass and relative coordinates back into the wavefunction.
  • A later reply reiterates the previous point, emphasizing that the wavefunction can be rewritten using the transformations of the coordinates.
  • Some participants express uncertainty about the interpretation of position operators in the context of the wavefunction and the transformations involved.
  • There is a suggestion to find the inverse transformation to express the original coordinates in terms of the center of mass and relative coordinates.
  • One participant confirms the approach of substituting the coordinates into the wavefunction to obtain the desired expression in terms of the original particle coordinates.

Areas of Agreement / Disagreement

Participants generally agree on the method of expressing the wavefunction in terms of the original coordinates, but there is some contention regarding the interpretation of operators and the transformations involved.

Contextual Notes

Some participants note the complexity of the operator relations and the need for careful handling of the transformations between coordinate systems.

Kashmir
Messages
466
Reaction score
74
We've a two interacting particle system, with Hamiltonian as:
##H_{s y s}=\frac{\mathbf{p}_{1}^{2}}{2 m_{1}}+\frac{\mathbf{p}_{2}^{2}}{2 m_{2}}+V\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)##

we reduce it to two non interacting fictitious particles,one moving freely other in a central field, thus the system has Hamiltonian: ##H_{s y s}=\frac{\mathbf{P}^{2}}{2 M}+\frac{\mathbf{p}_{r e l}^{2}}{2 \mu}+V(\mathbf r)## with the operator relations as:

##\mathbf{R}=\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}}{m_{1}+m_{2}}####\mathbf{r}=\mathbf{r}_{2}-\mathbf{r}_{1}##

##\mathbf{p}_{r e l}=\frac{m_{1} \mathbf{p}_{2}-m_{2} \mathbf{p}_{1}}{m_{1}+m_{2}}##

##\mathbf{P}=\mathbf{p}_{1}+\mathbf{p}_{2}##


We solve ##H|E\rangle=E|E\rangle## for the two non interacting particles and find the wavefunction ##\psi_{s y s}(\mathbf{R}, \mathbf{r})=\psi_{C M}(\mathbf{R}) \psi_{r e l}(\mathbf{r})##

How do we find the wavefunction in terms of ##\mathbf r_1,\mathbf r_2##? We can't just invert ##\mathbf{R}=\frac{m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}}{m_{1}+m_{2}}####\mathbf{r}=\mathbf{r}_{2}-\mathbf{r}_{1}## and use them because they are operator relations.
 
Physics news on Phys.org
Why do you think that? The wave function in terms of ##\vec{r}_1## and ##\vec{r}_2## is just the wave function you've written down with ##\vec{R}## and ##\vec{r}## expressed in terms of ##\vec{r}_1## and ##\vec{r}_2##.
 
  • Like
Likes   Reactions: Kashmir
vanhees71 said:
Why do you think that? The wave function in terms of ##\vec{r}_1## and ##\vec{r}_2## is just the wave function you've written down with ##\vec{R}## and ##\vec{r}## expressed in terms of ##\vec{r}_1## and ##\vec{r}_2##.
The eigenstate is
##\int|R\rangle \otimes|r\rangle
\psi(R, r) d R d r=|E\rangle##

In ##r_1,r_2## representation I need to find ##\left\langle r_{1}| \otimes\left\langle r_{2}|\left|\int\right| R\right\rangle \otimes \mid r\right\rangle \psi(R, r) d R d r##
 
Not sure what you mean,

(1) Not sure what you mean, in the position representation the position operators act just as numbers.
(2) Even in the operator sense, r1 and r2 most definitely can be given in terms of RCM and rrel. Try to find the inverse transformation.

I'll take the opportunity to point out to this channel
 
  • Love
Likes   Reactions: Kashmir
andresB said:
Not sure what you mean,

(1) Not sure what you mean, in the position representation the position operators act just as numbers.
(2) Even in the operator sense, r1 and r2 most definitely can be given in terms of RCM and rrel. Try to find the inverse transformation.

I'll take the opportunity to point out to this channel

I do use this channel. Professor M is nice :). Thank you
 
vanhees71 said:
Why do you think that? The wave function in terms of ##\vec{r}_1## and ##\vec{r}_2## is just the wave function you've written down with ##\vec{R}## and ##\vec{r}## expressed in terms of ##\vec{r}_1## and ##\vec{r}_2##.
So I simply write ##R, r## in terms of ##r_1,r_2## in ##\psi_{s y s}(\mathbf{R}, \mathbf{r})=\psi_{C M}(\mathbf{R}) \psi_{r e l}(\mathbf{r})## and get my wavefunction in terms of ##r_1,r_2##. Right?
 
  • Like
Likes   Reactions: vanhees71
Right!
 
  • Love
Likes   Reactions: Kashmir

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 12 ·
Replies
12
Views
925
  • · Replies 27 ·
Replies
27
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
913
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
4K