MHB How to Find Values of k for Equations with One Real Root?

  • Thread starter Thread starter mathdad
  • Start date Start date
AI Thread Summary
To find values of k for equations with exactly one real root, the discriminant must be set to zero using the formula b² - 4ac = 0. For the equation 3x² + (√(2k))x + 6 = 0, the discriminant involves the coefficient of x, which is √(2k). Similarly, for kx² + kx + 1 = 0, the discriminant must also equal zero to ensure a single real root. Both equations require solving for k to meet this condition. The application of the discriminant is essential for determining the values of k that yield one real root.
mathdad
Messages
1,280
Reaction score
0
Find values of k such that the equation has exactly one real root.

1. 3x^2 + (sqrt{2k})x + 6 = 0

2. kx^2 + kx + 1 = 0

Question:

Do the questions above involve the discriminant?

If so, I must apply b^2 - 4ac = 0, right?
 
Mathematics news on Phys.org
RTCNTC said:
Find values of k such that the equation has exactly one real root.

1. 3x^2 + (sqrt{2k})x + 6 = 0

2. kx^2 + kx + 1 = 0

Question:

Do the questions above involve the discriminant?

If so, I must apply b^2 - 4ac = 0, right?

Yes . you can solve with discriminant and you must apply $b^2-4ac=0$
 
Not too bad.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top