How to integral legendre polynomial

Click For Summary
SUMMARY

The integral of the Legendre polynomial multiplied by the cosine function over the interval from -1 to 1 can be expressed using Rodrigues' formula. Specifically, the integral $$\int_{-1}^{1} cos(x) P_{n}(x)\,dx$$ can be computed as $$\frac{1}{2^nn!}(-1)^{\frac{n}{2}} \int_{-1}^{1} cos(x) (x^2-1)^n\,dx$$ for even n, and it evaluates to zero for odd n due to the properties of odd functions. The final result for even n is $$\int_{-1}^{1} cos(x) P_{n}(x)\,dx = \frac{2}{2n+1}$$, which is derived through integration by parts and the use of the beta function.

PREREQUISITES
  • Understanding of Legendre polynomials and their properties
  • Familiarity with integration techniques, particularly integration by parts
  • Knowledge of Rodrigues' formula for Legendre polynomials
  • Basic understanding of beta and gamma functions
NEXT STEPS
  • Study the properties and applications of Legendre polynomials in mathematical physics
  • Learn about integration techniques involving special functions, particularly the beta and gamma functions
  • Explore the derivation and applications of Rodrigues' formula in various contexts
  • Investigate the use of Wolfram Alpha for solving complex integrals and its limitations
USEFUL FOR

Mathematicians, physicists, and students studying advanced calculus or mathematical analysis, particularly those interested in orthogonal polynomials and their applications in solving differential equations.

Another1
Messages
39
Reaction score
0
Question

$$\int_{-1}^{1} cos(x) P_{n}(x)\,dx$$

____________________________________________________________________________________________
my think (maybe incorrect)
$$\int_{-1}^{1} cos(x) P_{n}(x)\,dx$$
$$\frac{1}{2^nn!}\int_{-1}^{1} cos(x) \frac{d^n}{dx^n}(x^2-1)^n\,dx$$ This is rodrigues formula
by part n times
$$\frac{1}{2^nn!}(-1)^n\int_{-1}^{1} \frac{d^n}{dx^n}cos(x) \frac{d^{n-n}}{dx^{n-n}}(x^2-1)^n\,dx$$
$$\frac{1}{2^nn!}(-1)^n\int_{-1}^{1} \frac{d^n}{dx^n}cos(x) (x^2-1)^n\,dx$$
in case n = odd number
$$\frac{1}{2^nn!}(-1)^n\int_{-1}^{1} (-1)^{\frac{n+1}{2}}sin(x) (x^2-1)^n\,dx$$
in case n = even number
$$\frac{1}{2^nn!}(-1)^n\int_{-1}^{1} (-1)^{\frac{n}{2}}cos(x) (x^2-1)^n\,dx$$
_________________________________________________________________________________________________

how to integral

$$\int_{-1}^{1}sin(x) (x^2-1)^n\,dx$$ and $$\int_{-1}^{1}cos(x) (x^2-1)^n\,dx$$
 
Physics news on Phys.org
Another said:
Thank you. But i don't have pro Wolframalpha.
please. you can show that solution?

I do. But there's no worked solution for this one anyway.
 
Last edited:
Joppy said:
I do. But there's no worked solution for this one anyway.

thank you vary much. now i can solve it
 
Another said:
thank you vary much. now i can solve it

Would you mind sharing your solution? I remember there being a trick with these things but I cannot remember!
 
Joppy said:
Would you mind sharing your solution? I remember there being a trick with these things but I cannot remember!

Ok

let
$$ cos(x) = \sum_{n=0}^{\infty}C_{n}P_{n}(x)$$

orthogonal
$$ \int_{-1}^{1} cos(x)P_{n}(x)\,dx = \int_{-1}^{1} C_{n}P_{n}(x)P_{n}(x)\,dx$$
$$ \int_{-1}^{1} cos(x)P_{n}(x)\,dx = C_{n}\int_{-1}^{1} P_{n}(x)P_{n}(x)\,dx$$
see that
$$ \int_{-1}^{1} P_{n}(x)P_{n}(x)\,dx= \frac{1}{2^{2n}(n!)^2}\int_{-1}^{1} \frac{d^n}{dx^n}(x^2-1)^n\frac{d^n}{dx^n}(x^2-1)^n\,dx$$
you can integral by part n time
So..
$$ u= \frac{d^n}{dx^n}(x^2-1)^n$$ and $$du=\frac{d^{n+1}}{dx^{n+1}}(x^2-1)^n\,dx$$
$$ dv= \frac{d^n}{dx^n}(x^2-1)^ndx$$ and $$v=\frac{d^{n-1}}{dx^{n-1}}(x^2-1)^n$$

$$ udv=uv-vdu$$

$$ uv= \frac{d^n}{dx^n}(x^2-1)^n \frac{d^{n-1}}{dx^{n-1}}(x^2-1)^n =0 $$ When limit of the integrate from -1 to 1

So when integrate by part n times
$$ \int_{-1}^{1} P_{n}(x)P_{n}(x)\,dx= \frac{1}{2^{2n}(n!)^2}\left[0+0+...+(-1)^n\int_{-1}^{1}\frac{d^{n-n}}{dx^{n-n}}(x^2-1)^n \frac{d^{n+n}}{dx^{n+n}}(x^2-1)^n \,dx\right]$$
$$ \int_{-1}^{1} P_{n}(x)P_{n}(x)\,dx= \frac{1}{2^{2n}(n!)^2}\left[\int_{-1}^{1}(x^2-1)^n \frac{d^{2n}}{dx^{2n}}(1-x^2)^n \,dx\right]$$ ; times (-1)^n in (x^n-1)^n

You know $$(1-x^2)^n=\sum_{k=0}^{n}{n \choose k} 1^{n-k}(-1)^n(x^2)^n $$
$$ \int_{-1}^{1} P_{n}(x)P_{n}(x)\,dx= \frac{1}{2^{2n}(n!)^2}\left[\int_{-1}^{1}(x^2-1)^n \frac{d^{2n}}{dx^{2n}}\sum_{k=0}^{n}{n \choose k} 1^{n-k}(-1)^n(x^2)^n \,dx\right]$$

The final term of $$(1-x^2)^n=\sum_{k=0}^{n}{n \choose k} 1^{n-k}(-1)^n(x^2)^n = ...+ {n \choose n }(-1)^n x^{2n}$$

because $$ \frac{d^m}{dx^m}x^n = 0$$ when n < m

So that
$$ \int_{-1}^{1} P_{n}(x)P_{n}(x)\,dx= \frac{1}{2^{2n}(n!)^2}\left[\int_{-1}^{1}(x^2-1)^n \frac{d^{2n}}{dx^{2n}}(-1)^nx^{2n} \,dx\right]$$
$$ \int_{-1}^{1} P_{n}(x)P_{n}(x)\,dx= \frac{1}{2^{2n}(n!)^2}\left[\int_{-1}^{1}(x^2-1)^n (-1)^n (2n)! \,dx\right]$$
$$ \int_{-1}^{1} P_{n}(x)P_{n}(x)\,dx= \frac{(2n)!}{2^{2n}(n!)^2}\left[\int_{-1}^{1}(1-x^2)^n \,dx\right]$$

set $$s =\frac{x+1}{2}$$

$$ \int_{-1}^{1} P_{n}(x)P_{n}(x)\,dx= \frac{(2n)!}{2^{2n}(n!)^2}\left[\int_{0}^{1} 2\cdot 2^{2n}s^n(1-s)^n\,ds\right]$$ beta function
$$ \int_{-1}^{1} P_{n}(x)P_{n}(x)\,dx= \frac{(2n)!}{2^{2n}(n!)^2} 2\cdot 2^{2n}\frac{(n!)^2}{(2n+1)!}$$
$$ \int_{-1}^{1} P_{n}(x)P_{n}(x)\,dx= \frac{2}{2n+1}$$

see that
$$ \int_{-1}^{1} cos(x)P_{n}(x)\,dx= \frac{1}{2^{n}n!}\int_{-1}^{1}cos(x)\frac{d^n}{dx^n}(x^2-1)^n\,dx$$

You can integral by part n times.
$$ u = con(x)$$ and $$ dv = \frac{d^n}{dx^n}(x^2-1)^n dx $$
So . . .
$$ \int_{-1}^{1} cos(x)P_{n}(x)\,dx= \frac{(-1)^n}{2^{n}n!}\int_{-1}^{1}(x^2-1)^n \frac{d^n}{dx^n}cos(x),dx$$

give two solution

in case n = odd number
$$\int_{-1}^{1} cos(x)P_{n}(x)\,dx=\frac{1}{2^nn!}(-1)^n\int_{-1}^{1} (-1)^{\frac{n+1}{2}}sin(x) (x^2-1)^n\,dx$$
in case n = even number
$$\int_{-1}^{1} cos(x)P_{n}(x)\,dx=\frac{1}{2^nn!}(-1)^n\int_{-1}^{1} (-1)^{\frac{n}{2}}cos(x) (x^2-1)^n\,dx$$

But $$ sin(x) (x^2-1)^n $$ are Odd function So $$ \frac{1}{2^nn!}(-1)^n\int_{-1}^{1} (-1)^{\frac{n+1}{2}}sin(x) (x^2-1)^n\,dx = 0$$

left only one solution

$$\int_{-1}^{1} cos(x)P_{n}(x)\,dx=\frac{1}{2^nn!}(-1)^n\int_{-1}^{1} (-1)^{\frac{n}{2}}cos(x) (x^2-1)^n\,dx$$ n = 0,2,4,...
$$\int_{-1}^{1} cos(x)P_{n}(x)\,dx=\frac{1}{2^nn!}(-1)^{\frac{n}{2}} 2 \int_{0}^{1} cos(x) (1-x^2)^n\,dx$$ ; even function

Wolfram|Alpha: Computational Intelligence

You know $$ cos(x) = \sum_{i=0}^{\infty}\frac{(-1)^i}{(2i)!}x^{2i} $$
$$\int_{-1}^{1} cos(x)P_{n}(x)\,dx=\frac{2}{2^nn!}(-1)^{\frac{n}{2}} \int_{0}^{1} \sum_{i=0}^{\infty}\frac{(-1)^i}{(2i)!}x^{2i} (1-x^2)^n\,dx$$
$$\int_{-1}^{1} cos(x)P_{n}(x)\,dx=\frac{1}{2^nn!}(-1)^{\frac{n}{2}} \sum_{i=0}^{\infty}\frac{(-1)^i}{(2i)!} (2)\int_{0}^{1} x^{2i} (1-x^2)^n\,dx$$; Beta function form
$$\int_{-1}^{1} cos(x)P_{n}(x)\,dx=\frac{1}{2^nn!}(-1)^{\frac{n}{2}} \sum_{i=0}^{\infty}\frac{(-1)^i}{(2i)!} \frac{(i-\frac{1}{2})!n!}{(i-\frac{1}{2}+n+1)!}$$
$$\int_{-1}^{1} cos(x)P_{n}(x)\,dx=\frac{1}{2^nn!}(-1)^{\frac{n}{2}} \sum_{i=0}^{\infty}\frac{(-1)^i}{(2i)!} \frac{(i-\frac{1}{2})! \Gamma(n+1)}{(i+n+\frac{1}{2})!}$$

from $$(i-\frac{1}{2})! = \frac{1}{i!}(\frac{1}{2})^{2i}\sqrt{\pi}(2i)!$$

$$\int_{-1}^{1} cos(x)P_{n}(x)\,dx=\frac{1}{2^nn!}(-1)^{\frac{n}{2}}\Gamma(n+1) \sum_{i=0}^{\infty}\frac{(-1)^i}{(2i)!} \frac{1}{(i+n+\frac{1}{2})!}\frac{1}{i!}(\frac{1}{2})^{2i}\sqrt{\pi}(2i)!$$
$$\int_{-1}^{1} cos(x)P_{n}(x)\,dx=\frac{1}{2^nn!}(-1)^{\frac{n}{2}}\Gamma(n+1) \sum_{i=0}^{\infty}\frac{(-1)^i}{(2i)!} \frac{1}{(i+n+\frac{1}{2})!}\frac{1}{i!}(\frac{1}{2})^{2i}\sqrt{\pi}(2i)! \cdot \frac{2^{n+\frac{1}{2}}}{2^{n+\frac{1}{2}}}$$
$$\int_{-1}^{1} cos(x)P_{n}(x)\,dx=\frac{1}{2^nn!}(-1)^{\frac{n}{2}}\Gamma(n+1) 2^{n+\frac{1}{2}}\sqrt{\pi}\sum_{i=0}^{\infty}\frac{(-1)^i}{i!} \frac{1}{(i+n+\frac{1}{2})!}(\frac{1}{2})^{2i} \cdot (\frac{1}{2})^{n+\frac{1}{2}}$$
$$\int_{-1}^{1} cos(x)P_{n}(x)\,dx=\frac{1}{2^nn!}(-1)^{\frac{n}{2}}\Gamma(n+1) 2^{n+\frac{1}{2}}\sqrt{\pi}\sum_{i=0}^{\infty}\frac{(-1)^i}{i!} \frac{1}{(i+n+\frac{1}{2})!}(\frac{1}{2})^{n+\frac{1}{2}+2i}$$
$$\int_{-1}^{1} cos(x)P_{n}(x)\,dx=\frac{1}{2^nn!}(-1)^{\frac{n}{2}}\Gamma(n+1) 2^{n+\frac{1}{2}}\sqrt{\pi}J_{n+\frac{1}{2}}(1)$$ ; Bessel polynomialSo
$$C_{n}=\frac{2n+1}{2}\int_{-1}^{1} cos(x)P_{n}(x)\,dx= \frac{2n+1}{2} \frac{1}{2^nn!}(-1)^{\frac{n}{2}}\Gamma(n+1) 2^{n+\frac{1}{2}}\sqrt{\pi}J_{n+\frac{1}{2}}(1)$$
$$C_{n}=\frac{2n+1}{2}\int_{-1}^{1} cos(x)P_{n}(x)\,dx= \frac{2n+1}{n!}(-1)^{\frac{n}{2}}\Gamma(n+1) 2^{-\frac{1}{2}}\sqrt{\pi}J_{n+\frac{1}{2}}(1)$$ n = 0,2,4,...

and finaly

$$ cos(x) = \sum_{n=0}^{\infty}C_{n}P_{n}(x)$$
$$ cos(x) = \sum_{n=0}^{\infty} \frac{2n+1}{n!}(-1)^{\frac{n}{2}}\Gamma(n+1) 2^{-\frac{1}{2}}\sqrt{\pi}J_{n+\frac{1}{2}}(1) P_{n}(x)$$

- My solution
 
Last edited:

Similar threads

  • · Replies 30 ·
2
Replies
30
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
2K