arrow27
- 7
- 0
\begin{array}{l}
u = u(x,y) \\
v = v(x,y) \\
and\\
{u_x} + 4{v_y} = 0 \\
{v_x} + 9{u_y} = 0 \\
with\ the\ initial\ conditions \\
u(x,0) = 2x _(3)\\
v(x,0) = 3x _(4)\\
\end{array}
Easy,
u_{xx}-36u_{yy}=0 and v_{xx}-36v_{yy}=0
General solution u\left ( x,y \right )=h\left ( x+6y \right )+g\left ( y-6x \right )
Similar,
v\left ( x,y \right )=h\left ( x+6y \right )+g\left ( y-6x \right )
From (3) : 2x=h\left ( 6x \right )+g\left ( -6x \right )
From (4) : 3x=h\left ( 6x \right )+g\left ( -6x \right )
How to continue?
u = u(x,y) \\
v = v(x,y) \\
and\\
{u_x} + 4{v_y} = 0 \\
{v_x} + 9{u_y} = 0 \\
with\ the\ initial\ conditions \\
u(x,0) = 2x _(3)\\
v(x,0) = 3x _(4)\\
\end{array}
Easy,
u_{xx}-36u_{yy}=0 and v_{xx}-36v_{yy}=0
General solution u\left ( x,y \right )=h\left ( x+6y \right )+g\left ( y-6x \right )
Similar,
v\left ( x,y \right )=h\left ( x+6y \right )+g\left ( y-6x \right )
From (3) : 2x=h\left ( 6x \right )+g\left ( -6x \right )
From (4) : 3x=h\left ( 6x \right )+g\left ( -6x \right )
How to continue?
Last edited by a moderator: