Prototype
- 6
- 0
(x) sq. root of ((x^2) - 1)?
The discussion focuses on integrating the expression (x) sqrt((x^2) - 1) using substitution methods. Participants suggest letting u = x^2 - 1, leading to the differential du = 2x dx, which simplifies the integral to (1/2) ∫ sqrt(u) du. Alternative substitutions, such as x = sec(u) and x = cosh(t), are also discussed, highlighting different approaches to solving the integral. The conversation emphasizes the importance of notation and clarity in calculus problems.
PREREQUISITESStudents preparing for AP Calculus exams, educators teaching integration techniques, and anyone looking to enhance their understanding of calculus through substitution methods.
Jameson said:That last step is a typo or it's incorrect.
It should be:
u = x^2-1
du = 2x dx
\frac{du}{2} = x dx
Your end substitution is correct, with \frac{1}{2}\int\sqrt{u}du
but that one step is off.