How to Normalize and Integrate a Wave Function in the Range 0 to L?

theblender
Messages
3
Reaction score
0
Pretty basic question here, but I was wondering if someone could explain to me how to normalize a wave function. Specifically:

ψn(x) = A * √x * sin (n∏x2/L2), n = 1, 2, 3, ...

Normalized in the range 0 to L.

Thanks for the help, a little bit of a walk through would be much appreciated.
 
Physics news on Phys.org
What have you tried so far, and where are you stuck?
 
Well, I'm working it now, its been shed under some new light, so what I am doing is just integrating the square of psi and setting it equal to one, then solving for A. Which is what I tried initially, but I just got confused with multiplying the original by the complex conjugate.
 
Also having trouble integrating the statement cos ((2*pi*x^2)/L^2) dx.
 
theblender said:
Also having trouble integrating the statement cos ((2*pi*x^2)/L^2) dx.

Hint: you need to substitute x for some variable y so that you end up with cos(y^2) in the integrand. Then you can try messing around with trig, for example cos(y^2) = cos(y*y) = ?

You realize there is no easy way to expand that. In fact, wolframalpha gives:

http://www.wolframalpha.com/input/?i=cos(x^2)

which uses the "Fresnel C Integral" which I haven't even come across until this example.

So the integral is not representable by standard elementary functions...Edit: However integrating the square of your original wavefunction is quite straightforward once you calculate the integral of x(sin^2)(x^2).

Use the fact that (sin^2)(y) = (1/2)(1-cos(y))
 
Last edited:
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Back
Top