MHB How to Prove a Trigonometric Identity Involving x, y, and z?

Click For Summary
To prove the identity (x^2-1)(y^2-1)/xy + (y^2-1)(z^2-1)/yz + (z^2-1)(x^2-1)/zx = 4 under the condition xy + yz + zx = 1, trigonometric identities can be utilized, such as cotAcotB + cotBcotC + cotCcotA = 1. Users are encouraged to share their progress or initial thoughts to facilitate better assistance from others. This approach helps identify where they may be struggling or misapplying concepts. Engaging with the community can lead to more effective solutions and insights. Collaboration is key in tackling complex trigonometric proofs.
skcollins
Messages
1
Reaction score
0
If xy+yz+zx=1 then prove (x^2-1)(y^2-1)/xy+(y^2-1)(z^2-1)/yz+(z^2-1)(x^2-1)/zx=4 with trigonometric identities such as cotAcotB+cotBcotC+cotCcotA=1
 
Mathematics news on Phys.org
Hello skcollins and welcome to MHB! :D

We ask that our users show their progress (work thus far or thoughts on how to begin) when posting questions. This way our helpers can see where you are stuck or may be going astray and will be able to post the best help possible without potentially making a suggestion which you have already tried, which would waste your time and that of the helper.

Can you post what you have done so far?
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K