MHB How to Prove Limit 2^n/n! Using Epsilon Delta?

Click For Summary
The discussion focuses on proving the limit of \( \frac{2^n}{n!} \) as \( n \) approaches infinity using the epsilon-delta definition. The key argument involves showing that for any \( \epsilon > 0 \), there exists an \( N \) such that for all \( n > N \), \( \left|\frac{2^n}{n!}\right| < \epsilon \). A crucial step is establishing that for \( n \ge 3 \), \( n! \) can be bounded below by \( n \cdot 2^{n-2} \). This leads to the conclusion that choosing \( N > \max\{3, \frac{4}{\epsilon}\} \) ensures the inequality holds. The conversation highlights the importance of ensuring \( N \) is sufficiently large to validate the factorial inequality.
Dethrone
Messages
716
Reaction score
0
Using epsilon delta, prove
$$\lim_{{n}\to{\infty}}\frac{2^n}{n!}=0$$

Doesn't seem too difficult, but I have forgotten how to do it. Obvious starting point is $\forall \epsilon >0$, $\exists N$ such that whenever $n>N,\left|\frac{2^n}{n!} \right|<\epsilon$.
 
Last edited:
Physics news on Phys.org
Hi Rido12,

Note that if $n \ge 3$, $$n! = n\cdot (n-1)\cdot (n-2)\cdots \cdot 2\ge n\cdot 2\cdot 2 \cdots \cdot 2 = n\cdot 2^{n-2}.$$ Thus, given $\epsilon > 0$, choosing $N > \max\{3,\frac{4}{\epsilon}\}$ will make $$\left|\frac{2^n}{n!}\right| = \frac{2^n}{n!} \le \frac{4}{n} < \epsilon$$ for all $n \ge N$.
 
Hi Euge,

That is actually very smart (Cool). Can you clarify how we got the $3$ in $\max\{3,\frac{4}{\epsilon}\}$? Doesn't $\frac{4}{\epsilon}$ work for all epsilon, or have a missed a case?
 
The max piece was meant to ensure that $ N \ge 3$. So if $ n \ge N$, the inequality $ n! \ge n\cdot 2^{n-2} $ is valid.
 
Euge said:
The max piece was meant to ensure that $ N \ge 3$. So if $ n \ge N$, the inequality $ n! \ge n\cdot 2^{n-2} $ is valid.

That's very true. Thanks for the help, again! :D
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 25 ·
Replies
25
Views
4K
Replies
9
Views
2K
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K