Suppose that E is a field extension of F, and every polynomial f(x) in F[x] has a root in E. Then E is algebraically closed, i.e. every polynomial f(x) in E[x] has a root in E.(adsbygoogle = window.adsbygoogle || []).push({});

I've been told that this result is really difficult to prove, but it seems really intuitive so I find that surprising. Where can I find a proof of this result?

Any help would be greatly appreciated.

Thank You in Advance.

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# How to prove the field extension is algebraically closed

Loading...

Similar Threads - prove field extension | Date |
---|---|

I Proving that an operator is unbounded | Feb 8, 2018 |

I Proving a set is linearly independant | Apr 14, 2017 |

I Proving a property when elements of a group commute | Mar 29, 2017 |

To prove that a field is complex | May 31, 2012 |

**Physics Forums - The Fusion of Science and Community**