MHB How to Prove the Heptagon Diagonal Equation (a+b)^2(a-b)=ab^2?

  • Thread starter Thread starter Albert1
  • Start date Start date
Albert1
Messages
1,221
Reaction score
0
The measurement of each side length of a heptagon $ABCDEFG$ is equal to 1,
the diagonal of $\overline{AD}=a,$ and the diagonal of $\overline{BG}=b \,\,(a>b)$
prove :$(a+b)^2(a-b)=ab^2$
 
Mathematics news on Phys.org
Hi, Albert!

A hint is requested :o
 
lfdahl said:
Hi, Albert!

A hint is requested :o
hint:
Using “Ptolemy’s Theorem” on quadrilaterals ABDG and BDEG
 
My attempt with the help from Alberts hint:
View attachment 6459

From the figure, we have:

Ptolemys Theorem applied on quadrilateral ABDG: $a+b = ab$.

and applied on quadrilateral BDEG: $a^2 = b+b^2 \Rightarrow (a+b)(a-b) = b$.

Multiplying the left hand sides and the right hand sides yields the result:

$(a+b)^2(a-b) = ab^2$.
 

Attachments

  • Ptolemy´s Theorem applied.PNG
    Ptolemy´s Theorem applied.PNG
    14.8 KB · Views: 88
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top