How to Prove the IMO Inequality Challenge for Positive Reals?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Inequality
Click For Summary
SUMMARY

The discussion centers on proving the inequality for positive reals \(a, b, c\) that states \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}} > 2\). Participants shared their solutions and insights, with one user, Euge, receiving commendation for their contribution. The inequality is a classic problem in mathematical analysis, specifically in the context of inequalities and real numbers.

PREREQUISITES
  • Understanding of basic algebra and inequalities
  • Familiarity with the Cauchy-Schwarz inequality
  • Knowledge of mathematical proofs and logic
  • Experience with real number properties
NEXT STEPS
  • Study the Cauchy-Schwarz inequality in depth
  • Explore other inequalities in mathematical analysis
  • Learn about techniques for proving inequalities
  • Investigate the history and applications of the IMO (International Mathematical Olympiad) problems
USEFUL FOR

Mathematics students, educators, and enthusiasts interested in inequality proofs and competitive mathematics, particularly those preparing for the International Mathematical Olympiad.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For positive reals $a,\,b,\,c$, prove that $$\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\gt 2$$.
 
Mathematics news on Phys.org
Here is my solution.
Let $S = a + b + c$, $x = a/S$, $y = b/S$, and $z = c/S$, so that the expression may be written

$$\sqrt{\frac{x}{1-x}} + \sqrt{\frac{y}{1-y}} + \sqrt{\frac{z}{1-z}}$$

Let $u$, $v$, and $w$ be positive numbers such that $u^2 = x/(1 - x)$, $v^2 = y/(1 - y)$, and $w^2 = z/(1 - z)$. Then $x = u^2/(u^2 + 1)$, $y = v^2/(v^2 + 1)$, and $z = w^2/(w^2 + 1)$. Note that neither $u$, $v$, nor $w$ is equal to $1$, otherwise $x = y = z = 1/2$, implying that $x + y + z = 3/2$, even though $x + y + z = 1$. Therefore, $v^2 + 1 > 2v$, $v^2 + 1 > 2v$, and $w^2 + 1 > 2w$, forcing $x < \frac{u}{2}$, $y < \frac{v}{2}$, and $z < \frac{w}{2}$. Hence,

$$\sqrt{\frac{x}{1 - x}} + \sqrt{\frac{y}{1 - y}} + \sqrt{\frac{z}{1 - z}} = u + v + w > 2x + 2y + 2z = 2(x + y + z) = 2$$
 
Euge said:
Here is my solution.
Let $S = a + b + c$, $x = a/S$, $y = b/S$, and $z = c/S$, so that the expression may be written

$$\sqrt{\frac{x}{1-x}} + \sqrt{\frac{y}{1-y}} + \sqrt{\frac{z}{1-z}}$$

Let $u$, $v$, and $w$ be positive numbers such that $u^2 = x/(1 - x)$, $v^2 = y/(1 - y)$, and $w^2 = z/(1 - z)$. Then $x = u^2/(u^2 + 1)$, $y = v^2/(v^2 + 1)$, and $z = w^2/(w^2 + 1)$. Note that neither $u$, $v$, nor $w$ is equal to $1$, otherwise $x = y = z = 1/2$, implying that $x + y + z = 3/2$, even though $x + y + z = 1$. Therefore, $v^2 + 1 > 2v$, $v^2 + 1 > 2v$, and $w^2 + 1 > 2w$, forcing $x < \frac{u}{2}$, $y < \frac{v}{2}$, and $z < \frac{w}{2}$. Hence,

$$\sqrt{\frac{x}{1 - x}} + \sqrt{\frac{y}{1 - y}} + \sqrt{\frac{z}{1 - z}} = u + v + w > 2x + 2y + 2z = 2(x + y + z) = 2$$

Very well done, Euge! And thanks for participating!(Cool)

Here is my solution:
First we multiply the top and bottom of each fraction by $$\sqrt{a},\,\sqrt{b},\,\sqrt{c}$$ respectively, and simplify along the way to get:

$$\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}$$

$$=\frac{\sqrt{a}}{\sqrt{b+c}}+\frac{\sqrt{b}}{\sqrt{c+a}}+\frac{\sqrt{c}}{\sqrt{a+b}}$$

$$=\frac{\sqrt{a}\sqrt{a}}{\sqrt{a}\sqrt{b+c}}+\frac{\sqrt{b}\sqrt{b}}{\sqrt{b}\sqrt{c+a}}+\frac{\sqrt{c}\sqrt{c}}{\sqrt{c}\sqrt{a+b}}$$

$$=\frac{a}{\sqrt{a}\sqrt{b+c}}+\frac{b}{\sqrt{b}\sqrt{c+a}}+\frac{c}{\sqrt{c}\sqrt{a+b}}$$

$$\gt \frac{a}{\frac{a+b+c}{2}}+\frac{b}{\frac{a+b+c}{2}}+\frac{c}{\frac{a+b+c}{2}}$$ (from the AM-GM inequality)

$$\gt 2\left(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\right)$$

$$= 2\left(\frac{a+b+c}{a+b+c}\right)$$

$$= 2 $$(Q.E.D.)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K