MHB How to Prove the IMO Inequality Challenge for Positive Reals?

Click For Summary
The discussion centers on proving the inequality for positive reals \(a, b, c\) that states \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}} > 2\). Participants share their solutions and methods for tackling the problem. The conversation highlights various approaches to the proof, emphasizing mathematical reasoning and techniques. The engagement is positive, with members appreciating each other's contributions. The thread showcases collaborative problem-solving in mathematical inequalities.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For positive reals $a,\,b,\,c$, prove that $$\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\gt 2$$.
 
Mathematics news on Phys.org
Here is my solution.
Let $S = a + b + c$, $x = a/S$, $y = b/S$, and $z = c/S$, so that the expression may be written

$$\sqrt{\frac{x}{1-x}} + \sqrt{\frac{y}{1-y}} + \sqrt{\frac{z}{1-z}}$$

Let $u$, $v$, and $w$ be positive numbers such that $u^2 = x/(1 - x)$, $v^2 = y/(1 - y)$, and $w^2 = z/(1 - z)$. Then $x = u^2/(u^2 + 1)$, $y = v^2/(v^2 + 1)$, and $z = w^2/(w^2 + 1)$. Note that neither $u$, $v$, nor $w$ is equal to $1$, otherwise $x = y = z = 1/2$, implying that $x + y + z = 3/2$, even though $x + y + z = 1$. Therefore, $v^2 + 1 > 2v$, $v^2 + 1 > 2v$, and $w^2 + 1 > 2w$, forcing $x < \frac{u}{2}$, $y < \frac{v}{2}$, and $z < \frac{w}{2}$. Hence,

$$\sqrt{\frac{x}{1 - x}} + \sqrt{\frac{y}{1 - y}} + \sqrt{\frac{z}{1 - z}} = u + v + w > 2x + 2y + 2z = 2(x + y + z) = 2$$
 
Euge said:
Here is my solution.
Let $S = a + b + c$, $x = a/S$, $y = b/S$, and $z = c/S$, so that the expression may be written

$$\sqrt{\frac{x}{1-x}} + \sqrt{\frac{y}{1-y}} + \sqrt{\frac{z}{1-z}}$$

Let $u$, $v$, and $w$ be positive numbers such that $u^2 = x/(1 - x)$, $v^2 = y/(1 - y)$, and $w^2 = z/(1 - z)$. Then $x = u^2/(u^2 + 1)$, $y = v^2/(v^2 + 1)$, and $z = w^2/(w^2 + 1)$. Note that neither $u$, $v$, nor $w$ is equal to $1$, otherwise $x = y = z = 1/2$, implying that $x + y + z = 3/2$, even though $x + y + z = 1$. Therefore, $v^2 + 1 > 2v$, $v^2 + 1 > 2v$, and $w^2 + 1 > 2w$, forcing $x < \frac{u}{2}$, $y < \frac{v}{2}$, and $z < \frac{w}{2}$. Hence,

$$\sqrt{\frac{x}{1 - x}} + \sqrt{\frac{y}{1 - y}} + \sqrt{\frac{z}{1 - z}} = u + v + w > 2x + 2y + 2z = 2(x + y + z) = 2$$

Very well done, Euge! And thanks for participating!(Cool)

Here is my solution:
First we multiply the top and bottom of each fraction by $$\sqrt{a},\,\sqrt{b},\,\sqrt{c}$$ respectively, and simplify along the way to get:

$$\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}$$

$$=\frac{\sqrt{a}}{\sqrt{b+c}}+\frac{\sqrt{b}}{\sqrt{c+a}}+\frac{\sqrt{c}}{\sqrt{a+b}}$$

$$=\frac{\sqrt{a}\sqrt{a}}{\sqrt{a}\sqrt{b+c}}+\frac{\sqrt{b}\sqrt{b}}{\sqrt{b}\sqrt{c+a}}+\frac{\sqrt{c}\sqrt{c}}{\sqrt{c}\sqrt{a+b}}$$

$$=\frac{a}{\sqrt{a}\sqrt{b+c}}+\frac{b}{\sqrt{b}\sqrt{c+a}}+\frac{c}{\sqrt{c}\sqrt{a+b}}$$

$$\gt \frac{a}{\frac{a+b+c}{2}}+\frac{b}{\frac{a+b+c}{2}}+\frac{c}{\frac{a+b+c}{2}}$$ (from the AM-GM inequality)

$$\gt 2\left(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\right)$$

$$= 2\left(\frac{a+b+c}{a+b+c}\right)$$

$$= 2 $$(Q.E.D.)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K