How to Show \(\psi_{i}\ket{\xi} = \xi_{i}\ket{\xi}\)?

Click For Summary

Discussion Overview

The discussion revolves around demonstrating the relationship $$\psi_{i}\ket{\xi} = \xi_{i}\ket{\xi}$$ for a fermionic coherent state as presented in di Francesco's CFT book. Participants explore the implications of the formula $$\ket{\xi} = e^{\psi^{\dagger}T\xi}\ket{0}$$ and engage in technical reasoning regarding the algebraic manipulations involved in the proof.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents an initial approach to show the relationship by expanding the expression for $$\psi_{1}\ket{\xi}$$ using a 2x2 matrix for $$T$$ and Grassman number properties.
  • Another participant points out a potential error regarding a missing minus sign in the calculations, suggesting that the final equation should have plus signs instead.
  • A subsequent reply questions the reasoning behind the sign change when passing $$\psi_{1}$$ through terms involving $$\psi^{\dagger}$$, asserting that they should commute.
  • Participants engage in correcting each other's calculations and clarifying their reasoning, with one participant acknowledging a mistake regarding the sign and proceeding with the calculations based on the correction.
  • Further calculations are presented, but one participant expresses uncertainty about the results, noting that the current form does not resemble their original expectations.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the correct form of the equations or the implications of the signs in the calculations. Multiple competing views and uncertainties remain regarding the algebraic manipulations involved.

Contextual Notes

Limitations include unresolved mathematical steps and the dependence on the properties of Grassman numbers and Pauli exclusion, which may affect the validity of the calculations presented.

thatboi
Messages
130
Reaction score
20
I came across the following formula (2.68) in di Francesco's CFT book for a fermionic coherent state:
$$\ket{\xi} = e^{\psi^{\dagger}T\xi}\ket{0}$$
where##\ket{\xi} = \ket{\xi_{1},...,\xi_{n}}##, ##\xi_{i}## is a Grassman number, ##T## is some invertible matrix, and ##\psi^{\dagger}## is the fermion creation operator. I want to show that $$\psi_{i}\ket{\xi} = \xi_{i}\ket{\xi}$$ and am struggling to do so. I tried considering just the simplest case where ##T## is a 2x2 matrix. Then we would have (take ##i=1## as an example):
$$\psi_{1}\ket{\xi} =\left(1+T_{2,1}\xi_{1}\psi^{\dagger}_{2}\right)\left(1+T_{2,2}\xi_{2}\psi^{\dagger}_{2}\right) \psi_{1}\left(1+T_{1,1}\xi_{1}\psi^{\dagger}_{1}\right)\left(1+T_{1,2}\xi_{2}\psi^{\dagger}_{1}\right)\ket{0}$$
where I have used the fact that ##e^{\eta} = 1+\eta## for ##\eta## a Grassman number. Further expanding then gives:
$$\psi_{1}\left(1+T_{1,1}\xi_{1}\psi^{\dagger}_{1} + T_{1,2}\xi_{2}\psi^{\dagger}_{1} + T_{1,1}T_{1,2}\xi_{1}\xi_{2}\psi^{\dagger}_{1}\psi^{\dagger}_{1}\right)\ket{0}$$
Now the last term is automatically ##0## by Pauli exclusion, so passing the ##\psi_{1}## through results in:
$$\left(-T_{1,1}\xi_{1}-T_{1,2}\xi_{2}\right)\ket{0}$$
where the additional minus sign is because ##\{\psi,\xi\}=0##.
I am not sure how to proceed from here. Any advice appreciated.
 
Physics news on Phys.org
You missed one minus sign in the third equation, so your final equation should have plus signs instead of the minus ones. To proceed, now compute ##\xi_1|\xi\rangle## in a similar way.
 
Demystifier said:
You missed one minus sign in the third equation, so your final equation should have plus signs instead of the minus ones. To proceed, now compute ##\xi_1|\xi\rangle## in a similar way.
Do you mean when I pass the ##\psi_{1}## through the ##\psi^{\dagger}_{2}## terms? I don't see why a minus sign would be picked up (##\psi^{\dagger}_{1}## should commute with both ##\xi_{1}\psi^{\dagger}_{2}## and ##\xi_{2}\psi^{\dagger}_{2}##).
 
Last edited:
thatboi said:
I don't see why a minus sign would be picked up (##\psi^{\dagger}_{1}## should commute with both ##\xi_{1}\psi^{\dagger}_{2}## and ##\xi_{2}\psi^{\dagger}_{2}##).
You are right, my bad. :bow:
 
Demystifier said:
You are right, my bad. :bow:
Haha no worries, I can't edit the original post now, so I'll proceed based off what you said, it's a bit of a mess so let me know if you see anything suspicious.
$$\begin{equation}
\begin{split}
\xi_{1}\ket{\xi} &= \xi_{1}\left(1+T_{2,1}\xi_{1}\psi^{\dagger}_{2}\right)\left(1+T_{2,2}\xi_{2}\psi^{\dagger}_{2}\right) \left(1+T_{1,1}\xi_{1}\psi^{\dagger}_{1}\right)\left(1+T_{1,2}\xi_{2}\psi^{\dagger}_{1}\right)\ket{0}\\
&= \xi_{1}\left(1+T_{2,1}\xi_{1}\psi^{\dagger}_{2} + T_{2,2}\xi_{2}\psi^{\dagger}_{2}\right)\left(1+T_{1,1}\xi_{1}\psi^{\dagger}_{1}+T_{1,2}\xi_{2}\psi^{\dagger}_{1}\right)\ket{0}\\
&= \left(\xi_{1}+T_{2,2}\xi_{1}\xi_{2}\psi^{\dagger}_{2}\right)\left(1+T_{1,1}\xi_{1}\psi^{\dagger}_{1}+T_{1,2}\xi_{2}\psi^{\dagger}_{1}\right)\ket{0}\\
&=\left(\xi_{1}+T_{1,2}\xi_{1}\xi_{2}\psi^{\dagger}_{1} + T_{2,2}\xi_{1}\xi_{2}\psi^{\dagger}_{2}\right)\ket{0}
\end{split}
\end{equation}$$
In the second line I dropped the ##\psi^{\dagger}_{i}\psi^{\dagger}_{i}## terms due to Pauli exclusion again.
This still doesn't really look like what I had in my original post so I'm stuck.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K