I How to Show \(\psi_{i}\ket{\xi} = \xi_{i}\ket{\xi}\)?

thatboi
Messages
130
Reaction score
20
I came across the following formula (2.68) in di Francesco's CFT book for a fermionic coherent state:
$$\ket{\xi} = e^{\psi^{\dagger}T\xi}\ket{0}$$
where##\ket{\xi} = \ket{\xi_{1},...,\xi_{n}}##, ##\xi_{i}## is a Grassman number, ##T## is some invertible matrix, and ##\psi^{\dagger}## is the fermion creation operator. I want to show that $$\psi_{i}\ket{\xi} = \xi_{i}\ket{\xi}$$ and am struggling to do so. I tried considering just the simplest case where ##T## is a 2x2 matrix. Then we would have (take ##i=1## as an example):
$$\psi_{1}\ket{\xi} =\left(1+T_{2,1}\xi_{1}\psi^{\dagger}_{2}\right)\left(1+T_{2,2}\xi_{2}\psi^{\dagger}_{2}\right) \psi_{1}\left(1+T_{1,1}\xi_{1}\psi^{\dagger}_{1}\right)\left(1+T_{1,2}\xi_{2}\psi^{\dagger}_{1}\right)\ket{0}$$
where I have used the fact that ##e^{\eta} = 1+\eta## for ##\eta## a Grassman number. Further expanding then gives:
$$\psi_{1}\left(1+T_{1,1}\xi_{1}\psi^{\dagger}_{1} + T_{1,2}\xi_{2}\psi^{\dagger}_{1} + T_{1,1}T_{1,2}\xi_{1}\xi_{2}\psi^{\dagger}_{1}\psi^{\dagger}_{1}\right)\ket{0}$$
Now the last term is automatically ##0## by Pauli exclusion, so passing the ##\psi_{1}## through results in:
$$\left(-T_{1,1}\xi_{1}-T_{1,2}\xi_{2}\right)\ket{0}$$
where the additional minus sign is because ##\{\psi,\xi\}=0##.
I am not sure how to proceed from here. Any advice appreciated.
 
Physics news on Phys.org
You missed one minus sign in the third equation, so your final equation should have plus signs instead of the minus ones. To proceed, now compute ##\xi_1|\xi\rangle## in a similar way.
 
Demystifier said:
You missed one minus sign in the third equation, so your final equation should have plus signs instead of the minus ones. To proceed, now compute ##\xi_1|\xi\rangle## in a similar way.
Do you mean when I pass the ##\psi_{1}## through the ##\psi^{\dagger}_{2}## terms? I don't see why a minus sign would be picked up (##\psi^{\dagger}_{1}## should commute with both ##\xi_{1}\psi^{\dagger}_{2}## and ##\xi_{2}\psi^{\dagger}_{2}##).
 
Last edited:
thatboi said:
I don't see why a minus sign would be picked up (##\psi^{\dagger}_{1}## should commute with both ##\xi_{1}\psi^{\dagger}_{2}## and ##\xi_{2}\psi^{\dagger}_{2}##).
You are right, my bad. :bow:
 
Demystifier said:
You are right, my bad. :bow:
Haha no worries, I can't edit the original post now, so I'll proceed based off what you said, it's a bit of a mess so let me know if you see anything suspicious.
$$\begin{equation}
\begin{split}
\xi_{1}\ket{\xi} &= \xi_{1}\left(1+T_{2,1}\xi_{1}\psi^{\dagger}_{2}\right)\left(1+T_{2,2}\xi_{2}\psi^{\dagger}_{2}\right) \left(1+T_{1,1}\xi_{1}\psi^{\dagger}_{1}\right)\left(1+T_{1,2}\xi_{2}\psi^{\dagger}_{1}\right)\ket{0}\\
&= \xi_{1}\left(1+T_{2,1}\xi_{1}\psi^{\dagger}_{2} + T_{2,2}\xi_{2}\psi^{\dagger}_{2}\right)\left(1+T_{1,1}\xi_{1}\psi^{\dagger}_{1}+T_{1,2}\xi_{2}\psi^{\dagger}_{1}\right)\ket{0}\\
&= \left(\xi_{1}+T_{2,2}\xi_{1}\xi_{2}\psi^{\dagger}_{2}\right)\left(1+T_{1,1}\xi_{1}\psi^{\dagger}_{1}+T_{1,2}\xi_{2}\psi^{\dagger}_{1}\right)\ket{0}\\
&=\left(\xi_{1}+T_{1,2}\xi_{1}\xi_{2}\psi^{\dagger}_{1} + T_{2,2}\xi_{1}\xi_{2}\psi^{\dagger}_{2}\right)\ket{0}
\end{split}
\end{equation}$$
In the second line I dropped the ##\psi^{\dagger}_{i}\psi^{\dagger}_{i}## terms due to Pauli exclusion again.
This still doesn't really look like what I had in my original post so I'm stuck.
 
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...

Similar threads

Back
Top