How to show that this expression with tensors reduces to zero?

Click For Summary

Homework Help Overview

The discussion revolves around a tensor expression related to the transformation of Christoffel symbols and the conditions under which a specific term reduces to zero. The subject area is tensor calculus, particularly focusing on the properties of tensors under coordinate transformations.

Discussion Character

  • Exploratory, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • The original poster attempts to manipulate the expression for the transformed Christoffel symbols and identify terms that vanish. Participants explore the implications of symmetry in the metric tensor and the properties of dummy indices.

Discussion Status

Participants have provided insights regarding the symmetry of the metric and the nature of dummy indices. There is ongoing exploration of how these properties affect the original expression, with some participants questioning the correctness of earlier steps and suggesting potential errors in reasoning.

Contextual Notes

There is mention of the original poster's limited background in tensor calculus, which may influence their understanding of the problem. Additionally, the discussion references a resource intended to clarify common mistakes with index manipulation in tensor expressions.

phyTens
Messages
6
Reaction score
1
Homework Statement
Following a book "Introducing Einstein's Relativity" by Ray d'Inverno, I came across this problem (6.16):
Show directly that $$\Gamma^a_{bc}=\frac{1}{2}g^{ad}(\partial_b g_{dc}+\partial_c g_{db}-\partial_d g_{bc})$$ transforms like a connection.
Relevant Equations
The definition of ##\Gamma^a_{bc}## given above, and the usual rules for transforming tensors, i. e. $$g'^{ab}=\frac{\partial x'^a}{\partial x^c}\frac{\partial x'^b}{\partial x^d}g^{cd}$$

A useful result is also
$$\partial'_b g'_{dc}=\frac{\partial x^e}{\partial x'^b} \frac{\partial x^f}{\partial x'^c} \frac{\partial x^g}{\partial x'^d}\partial_e g_{gf}+\frac{\partial x^e}{\partial x'^b}\frac{\partial}{\partial x^e}\left (\frac{\partial x^g}{\partial x'^d}\frac{\partial x^f}{\partial x'^c}\right ) g_{gf}$$
I simply just wrote down the definition of ##\Gamma'^a_{bc}##, and inserted the transformations of ##g'^{ad}##, ##g'_{dc,b}##, and the like terms. After some rearranging and cancelling out,

$$\Gamma'^a_{bc}=\frac{\partial x'^a}{\partial x^e}\frac{\partial x^f}{\partial x'^b}\frac{\partial x^g}{\partial x'^c}\Gamma^e_{fg}+\frac{\partial x'^a}{\partial x^e}\frac{\partial^2 x^e}{\partial x'^b\,\partial x'^c}+\frac{1}{2}\frac{\partial x'^a}{\partial x^e}\frac{\partial x'^d}{\partial x^h}g^{eh}g_{hg}\left(\frac{\partial^2 x^h}{\partial x'^c\,\partial x'^d}\frac{\partial x^g}{\partial x'^b}-\frac{\partial x^h}{\partial x'^b}\frac{\partial^2 x^g}{\partial x'^c\,\partial x'^d} \right )$$

The first two terms correspond to the usual transformation law for connections, hence the third term should vanish. If my calculations until this point are correct, the original problem reduces to proving that the following expression reduces to zero:
$$\frac{1}{2}\frac{\partial x'^a}{\partial x^e}\frac{\partial x'^d}{\partial x^h}g^{eh}g_{hg}\left(\frac{\partial^2 x^h}{\partial x'^c\,\partial x'^d}\frac{\partial x^g}{\partial x'^b}-\frac{\partial x^h}{\partial x'^b}\frac{\partial^2 x^g}{\partial x'^c\,\partial x'^d} \right )$$

However, I couldn't show this, despite making lots of attempts. One of more promising attempts is swapping the dummy indices ##g## and ##h## in the second term, and arriving at
$$\frac{1}{2}\frac{\partial x'^a}{\partial x^e}\frac{\partial x^g}{\partial x'^b}\frac{\partial^2 x^h}{\partial x'^c\, \partial x'^d}\left( \frac{\partial x'^d}{\partial x^h}g^{eh}-\frac{\partial x'^d}{\partial x^g}g^{eg}\right )$$
which would have to be proved to be equal to zero.

Unfortunately, I only know the basics of tensors, and don't know how such equation could be proved. As such, I am kindly asking you to post some insight on how such a problem could be tackled. Of course, I have almost certainly already made some errors, and I would be happy if you'd pointed that out as well.
 
Physics news on Phys.org
Use the fact that the metric is symmetric.
 
  • Like
Likes   Reactions: topsquark
I used this fact to derive the last expression in the post, but I haven't been able to go much further. Could you be more specific of where to apply this fact?
 
In the last expression, note that ##g## and ##h## are dummy indices, so the two terms in the parentheses are equal.

Your last bit of work wasn't necessary though. In the earlier line, you had this factor
$$\left(\frac{\partial x^g}{\partial x'^b}\frac{\partial^2 x^h}{\partial x'^c\,\partial x'^d}-\frac{\partial x^h}{\partial x'^b}\frac{\partial^2 x^g}{\partial x'^c\,\partial x'^d} \right ),$$ which I rearranged slightly to make its antisymmetry with respect to the indices ##g## and ##h## obvious. Since your multiplying it by ##g_{hg}##, which is symmetric, the product will vanish.
 
  • Like
Likes   Reactions: topsquark
vela said:
Since your multiplying it by ghg, which is symmetric, the product will vanish.
Oh, thank you!

vela said:
In the last expression, note that g and h are dummy indices, so the two terms in the parentheses are equal.
I really wanted to use this fact, but I was worried because ##g## and ##h## also show up in the factor before the difference as well. Is this not a problem when cancelling out the terms in the difference?
 
  • Like
Likes   Reactions: topsquark and phyTens

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
2K
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
Replies
3
Views
2K
Replies
2
Views
1K
Replies
2
Views
1K
Replies
1
Views
2K