MHB How to Simplify an Integral Involving tan x

  • Thread starter Thread starter Math1
  • Start date Start date
  • Tags Tags
    Tan
Click For Summary
The integral $\int_{0}^{\pi/2} \frac{dx}{1+\tan^{\sqrt{2}}(x)}$ can be simplified by substituting $x$ with $\frac{\pi}{2}-x$, leading to a second expression that can be combined with the original. This results in two integrals that can be expressed in terms of $t = \tan(x)$, allowing the integral to be split into two ranges. By applying a substitution for the second integral, the two parts can be combined to simplify further. Ultimately, the integral evaluates to $\frac{\pi}{4}$.
Math1
$

\displaystyle \int_{0}^{\pi/2} \frac{dx}{1+(tan(x))^{\sqrt2}}$

Could anyone tell me how to start,

In a book ,it was given that $\sqrt2$ does not even matter
 
Last edited by a moderator:
Physics news on Phys.org
Replace $\sqrt2$ for any power and put $x\mapsto\dfrac\pi2-x.$
 
\( \displaystyle \begin{align*}
I &=\int_{0}^{\pi/2}\frac{1}{1+\tan^{\sqrt{2}}(x)}dx \\ \Rightarrow I &=\int_{0}^{\pi/2}\frac{\cos^{\sqrt{2}}(x)}{\sin^{\sqrt{2}}(x)+ \cos^{\sqrt{2}}(x)}dx \qquad (1)

\end{align*} \)

Applying Property,\( \displaystyle \begin{align*}
I &= \int_{0}^{\pi/2}\frac{\cos^{\sqrt{2}}\left( \frac{\pi}{2}-x \right)}{\sin^{\sqrt{2}}\left( \frac{\pi}{2}-x \right)+ \cos^{\sqrt{2}}\left( \frac{\pi}{2}-x \right)}dx\\ \Rightarrow I &= \int_{0}^{\pi/2}\frac{\sin^{\sqrt{2}}(x)}{\sin^{\sqrt{2}}(x)+ \cos^{\sqrt{2}}(x)}dx \qquad (2)

\end{align*} \)

Add equations (1) and (2) and see what happens! (Giggle)
 
Last edited:
Let $x = \tan^{-1}{t}$, then:

$\begin{aligned} I & = \int_{0}^{\pi/2}\frac{1}{1+\tan^{\alpha}{x}}\;{dx} \\& = \int_{0}^{\infty}\frac{1}{(1+t^2)(1+t^{\alpha})}\;{dt} \end{aligned}$

Range it from $[0, 1]$ and $[1, \infty]$,

$\displaystyle I = \int_{0}^{1}\frac{1}{(1+t^2)(1+t^{\alpha})}\;{dt}+\int_{1}^{\infty}\frac{1}{(1+t^2)(1+t^{\alpha})}\;{dt}$

Put $t \mapsto \frac{1}{t}$ for the second one,

$\displaystyle \begin{aligned}I & = \int_{0}^{1}\frac{1}{(1+t^2)(1+t^{\alpha})}\;{dt}+\int_{0}^{1}\frac{t^{\alpha}}{(1+t^2(1+t^{\alpha})}\;{dt} \\& = \int_{0}^{1}\frac{1+t^{\alpha}}{(1+t^2)(1+t^{ \alpha})}\;{dt} = \int_{0}^{1}\frac{1}{1+t^2}\;{dt} = \frac{\pi}{4}.\end{aligned}$
 
Last edited:
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
1K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K