How to Simplify an Integral Involving tan x

  • Context: MHB 
  • Thread starter Thread starter Math1
  • Start date Start date
  • Tags Tags
    Tan
Click For Summary
SUMMARY

The integral \( \displaystyle I = \int_{0}^{\pi/2} \frac{dx}{1+\tan^{\sqrt{2}}(x)} \) simplifies to \( \frac{\pi}{4} \). By substituting \( x \mapsto \frac{\pi}{2} - x \), the integral can be expressed in two equivalent forms, leading to a straightforward addition of both forms. The transformation \( t = \tan{x} \) allows the integral to be evaluated over two ranges, ultimately confirming that the result is independent of the exponent \( \sqrt{2} \) and holds for any power.

PREREQUISITES
  • Understanding of definite integrals
  • Familiarity with trigonometric functions, specifically tangent
  • Knowledge of substitution methods in calculus
  • Basic skills in manipulating algebraic expressions
NEXT STEPS
  • Explore the properties of definite integrals involving trigonometric functions
  • Learn about integral transformations and substitutions
  • Study the evaluation of integrals using symmetry properties
  • Investigate the generalization of integrals with different powers of tangent
USEFUL FOR

Mathematicians, calculus students, and educators looking to deepen their understanding of integral calculus and trigonometric integrals.

Math1
$

\displaystyle \int_{0}^{\pi/2} \frac{dx}{1+(tan(x))^{\sqrt2}}$

Could anyone tell me how to start,

In a book ,it was given that $\sqrt2$ does not even matter
 
Last edited by a moderator:
Physics news on Phys.org
Replace $\sqrt2$ for any power and put $x\mapsto\dfrac\pi2-x.$
 
\( \displaystyle \begin{align*}
I &=\int_{0}^{\pi/2}\frac{1}{1+\tan^{\sqrt{2}}(x)}dx \\ \Rightarrow I &=\int_{0}^{\pi/2}\frac{\cos^{\sqrt{2}}(x)}{\sin^{\sqrt{2}}(x)+ \cos^{\sqrt{2}}(x)}dx \qquad (1)

\end{align*} \)

Applying Property,\( \displaystyle \begin{align*}
I &= \int_{0}^{\pi/2}\frac{\cos^{\sqrt{2}}\left( \frac{\pi}{2}-x \right)}{\sin^{\sqrt{2}}\left( \frac{\pi}{2}-x \right)+ \cos^{\sqrt{2}}\left( \frac{\pi}{2}-x \right)}dx\\ \Rightarrow I &= \int_{0}^{\pi/2}\frac{\sin^{\sqrt{2}}(x)}{\sin^{\sqrt{2}}(x)+ \cos^{\sqrt{2}}(x)}dx \qquad (2)

\end{align*} \)

Add equations (1) and (2) and see what happens! (Giggle)
 
Last edited:
Let $x = \tan^{-1}{t}$, then:

$\begin{aligned} I & = \int_{0}^{\pi/2}\frac{1}{1+\tan^{\alpha}{x}}\;{dx} \\& = \int_{0}^{\infty}\frac{1}{(1+t^2)(1+t^{\alpha})}\;{dt} \end{aligned}$

Range it from $[0, 1]$ and $[1, \infty]$,

$\displaystyle I = \int_{0}^{1}\frac{1}{(1+t^2)(1+t^{\alpha})}\;{dt}+\int_{1}^{\infty}\frac{1}{(1+t^2)(1+t^{\alpha})}\;{dt}$

Put $t \mapsto \frac{1}{t}$ for the second one,

$\displaystyle \begin{aligned}I & = \int_{0}^{1}\frac{1}{(1+t^2)(1+t^{\alpha})}\;{dt}+\int_{0}^{1}\frac{t^{\alpha}}{(1+t^2(1+t^{\alpha})}\;{dt} \\& = \int_{0}^{1}\frac{1+t^{\alpha}}{(1+t^2)(1+t^{ \alpha})}\;{dt} = \int_{0}^{1}\frac{1}{1+t^2}\;{dt} = \frac{\pi}{4}.\end{aligned}$
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
1K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K