How to Simplify This Trigonometric Equation Using Substitutions?

In summary: If so, you can use that to simplify the expression. In summary, the conversation is discussing a trigonometric identity involving the substitution method. The goal is to simplify the expression using trigonometric identities, specifically one for ##\cos(2\alpha)##.
  • #1
Fred1230
2
1
Returning if I have to show the effort, I came to this:
[tex]\frac{\sin4\alpha}{1+\cos4\alpha}\cdot\frac{\cos2\alpha}{1+\cos2\alpha}\cdot\frac{\cos\alpha}{1+\cos\alpha}=\tan\frac{\alpha}{2}.[/tex]
=
[tex]\frac{\sin4\alpha}{\sin^2\alpha+cos^2\alpha+\cos4\alpha}\cdot\frac{(\sin^2\alpha+cos^2\alpha)-2sin^2\alpha}{\sin^2\alpha+cos^2\alpha+\cos2\alpha}\cdot\frac{\cos\alpha}{\sin^2\alpha+cos^2\alpha+\cos\alpha}=\frac{\sin\alpha^2}{\cos2\alpha}.[/tex]
I don't know how to use substitutions
 
Physics news on Phys.org
  • #2
[tex]s=\sin\alpha[/tex] and [tex]c=\cos\alpha[/tex]
 
  • #4
Fred1230 said:
Returning if I have to show the effort, I came to this:
[tex]\frac{\sin4\alpha}{1+\cos4\alpha}\cdot\frac{\cos2\alpha}{1+\cos2\alpha}\cdot\frac{\cos\alpha}{1+\cos\alpha}=\tan\frac{\alpha}{2}.[/tex]
=
[tex]\frac{\sin4\alpha}{\sin^2\alpha+cos^2\alpha+\cos4\alpha}\cdot\frac{(\sin^2\alpha+cos^2\alpha)-2sin^2\alpha}{\sin^2\alpha+cos^2\alpha+\cos2\alpha}\cdot\frac{\cos\alpha}{\sin^2\alpha+cos^2\alpha+\cos\alpha}=\frac{\sin\alpha^2}{\cos2\alpha}.[/tex]
I don't know how to use substitutions
Substitute ##\alpha=60^{\circ}## in your expression and check if you come out with ##\tan30^{\circ}##. If not it's back to the drawing board!
 
  • #5
Fred1230 said:
Returning if I have to show the effort, I came to this:
[tex]\frac{\sin4\alpha}{1+\cos4\alpha}\cdot\frac{\cos2\alpha}{1+\cos2\alpha}\cdot\frac{\cos\alpha}{1+\cos\alpha}=\tan\frac{\alpha}{2}.[/tex]
=
[tex]\frac{\sin4\alpha}{\sin^2\alpha+cos^2\alpha+\cos4\alpha}\cdot\frac{(\sin^2\alpha+cos^2\alpha)-2sin^2\alpha}{\sin^2\alpha+cos^2\alpha+\cos2\alpha}\cdot\frac{\cos\alpha}{\sin^2\alpha+cos^2\alpha+\cos\alpha}=\frac{\sin\alpha^2}{\cos2\alpha}.[/tex]
I don't know how to use substitutions
Do you know a formula for ##\cos(2\alpha)## in terms of ##\cos(\alpha)##?
 

Similar threads

  • Precalculus Mathematics Homework Help
Replies
12
Views
2K
  • Precalculus Mathematics Homework Help
Replies
10
Views
1K
  • Precalculus Mathematics Homework Help
Replies
21
Views
1K
  • Precalculus Mathematics Homework Help
Replies
2
Views
1K
  • Precalculus Mathematics Homework Help
Replies
20
Views
1K
  • Precalculus Mathematics Homework Help
Replies
17
Views
2K
  • Introductory Physics Homework Help
Replies
5
Views
550
  • Calculus and Beyond Homework Help
Replies
1
Views
404
  • Precalculus Mathematics Homework Help
Replies
9
Views
2K
  • Linear and Abstract Algebra
Replies
1
Views
867
Back
Top