MHB How to Solve an Integral Problem Involving a Continuous Function?

  • Thread starter Thread starter grgrsanjay
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
The integral problem involves finding the integrals of a continuous function defined by an equation that includes an integral term. The equation can be manipulated to express the function as a polynomial, specifically in the form of \( f(x) = ax + bx^2 \). By integrating and differentiating the original equation, relationships between constants can be established, leading to a system of equations for the coefficients. The discussion emphasizes the importance of recognizing the continuity of the function and using calculus techniques to derive the necessary equations. The approach combines integration, differentiation, and polynomial approximation to solve for the desired integrals.
grgrsanjay
Messages
12
Reaction score
0
Let $f:R \to R$ be a continuous and differential function given by

$\displaystyle f(x) = x + \int_0^1 (xy + x^2)f(y)dy$

find $\displaystyle \int_0^1 f(x)dx$ and $\displaystyle \int_0^1 xf(x)dx$I wanted to know how i could start the problem.Please do not give full solution

It would be good if you could even help me with the LaTeX too...
 
Last edited by a moderator:
Physics news on Phys.org
Re: Calculus problem

What I might try. Expanding your integral equation gives

$\displaystyle f(x) = x + x\int_0^1 yf(y)dy + x^2\int_0^1 f(y)dy\;\;\;(1)$

Now $f(y)$ is continuous so $\displaystyle \int_0^1 f(y)dy$ and $\displaystyle \int_0^1 y f(y)$ are constant so from (1) we have a preliminary form for $f(x)$, namely

$\displaystyle f(x) = a x + bx^2$

Then use (1).
 
Re: Calculus problem

$\displaystyle f(x) = x + \int_0^1 (xy + x^2)f(y)dy$
Let me integrate it, then $\displaystyle \int_0^1 f(x)dx$ = $\displaystyle (1+\int_0^1 yf(y)dy)$. $\displaystyle \int_0^1 xdx$ + $\displaystyle { \int_0^1 f(y)dy}. \int_0^1 x^2 dx$

So , I get the equation 4A = 3 + 3B $(Lazy$ $to$ $type$ $latex...so$ $used$ $A$ $and$ $B)$

Then what equation would i get??
 
If you differentiate both sides of the given equation with respect to x, you get $\displaystyle f'= 1+ \int_0^1 (y+ 2x)f(y)dy$. If you differentiate again, you get $\displaystyle f'= \int_0^1 f(y)dy$ which is a constant for all x. Just call that constant A and f''= A gives f'= Ax+ B and then $\displaystyle f(x)= (A/2)x^2+ Bx+ C$, a general quadratic. Replacing f by that in the origina equation will give you three equations for A, B, and C.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K