MHB How to Solve the Trigonometric Equation cos5x+cosx=cos6x?

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The trigonometric equation cos5x + cosx = cos6x can be transformed using trigonometric identities, leading to the polynomial equation 32c^6 - 16c^5 - 48c^4 + 20c^3 + 18c^2 - 6c - 1 = 0. This factors into three components, with the first two yielding solutions for x as π/3, 5π/3, π/4, 3π/4, 5π/4, and 7π/4. The third factor, a cubic equation, presents challenges as it has real roots, but one is invalid for cosine values. Additionally, using Euler's identity allows for a complex approach, leading to further solutions on the unit circle. The discussion highlights various methods to tackle the equation, emphasizing the complexity involved.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve $cos5x+cosx=cos6x$ in the interval $0<x<2\pi$.

Without thinking much, I do the following:
$2cos3xcos2x=cos6x$
Now, even if I still refuse to devise a plan but blindly applying the trig formula, I get:
$2cos3xcos2x=cos^23x-sin^23x$

Hmm, clearly this isn't going to bring me to any credible output.:(

But questions like this often yield the cases where:
1. zero=zero
2. 1 = 1

Thus, without actually solving it, I can say that
$x=\frac{\pi}{4}, \frac{\pi}{3}, and \frac{3\pi}{4}$ in the interval $0<x<2\pi$. I must have left out some other values. That is for sure.

That is my thought.

Despite my having said this, I tried to expand it and get down to all terms involving only $cos^nx$ and/or $sin^nx$

$2cos3xcos2x=cos^23x-sin^23x$
$2(4cos^3x-3cosx)(2cos^2x-1)=(4cos^3x-3cosx)^2-(3sinx-4sin^3x)^2$
Ah! This is a move in the wrong direction.

Could someone help me, please?

Thanks.
 
Mathematics news on Phys.org
If you use the multiple angle formulae for $\cos(5x)$ and $\cos(6x)$ and write $c=\cos x$ then the equation becomes $32c^6-16c^5-48c^4+20c^3+18c^2-6c-1=0.$ That factorises as $(2c-1)(2c^2-1)(8c^3-8c-1)=0.$

The first factor $2c-1$ gives the equation $\cos x=1/2$, corresponding to the solutions $x=\pi/3$ and $x=5\pi/3$.

The second factor $2c^2-1$ gives the equation $\cos x=\pm1/\sqrt2$, corresponding to the solutions $x=\pi/4$, $x=3\pi/4$, $x=5\pi/4$ and $x=7\pi/4$.

But the third factor $8c^3-8c-1$ look completely intractable to me. The cubic equation $8c^3-8c-1=0$ has three real roots. One root is greater than 1 and so does not correspond to any values of $\cos x.$ The other two roots are negative, and as far as I can see do not correspond to any recognisable values of $x.$
 
Last edited:
Using Euler's identity $\displaystyle \cos x = \frac{e^{i x}+ e^{- i x}}{2}$ the trigonometric equation becomes...

$\displaystyle e^{5 i x} + e^{-5 i x}+ e^{i x} + e^{- i x}= e^{i 6 x} + e^{ -6 i x}$ (1)

... and setting $\displaystyle e^{i x}= \xi$ is some steps we arrive to write...

$\displaystyle \xi^{12} -\xi^{11}- \xi^{7} - \xi^{5} - \xi +1= (\xi^{2}-\xi+1)\ (\xi^{4}+1)\ (\xi^{6}-\xi^{4} -\xi^{3}-\xi^{2}+1)=0$ (2)

Because is $\displaystyle x=-i\ \ln \xi$ the solution of (1) will be derived from the solution of (2) which lie on the unit circle. The factor $\displaystyle \xi^{2} - \xi +1$ conducts us to the solutions $\displaystyle x=\pm \frac{\pi}{3}$. The factor $\displaystyle \xi^{4}+1$ conducts us to the solutions $\displaystyle x= (2n+1)\ \frac{\pi}{4}$.The last factor $\displaystyle \xi^{6} -\xi^{4} -\xi^{3}-\xi^{2}+1$ is of course less 'comfortable' but its numerical solution shows that four of its complex roots lie on the unit circle...

http://www.wolframalpha.com/input/?i=x^6-x^4-x^3-x^2+1=0

... and are in the second and third quadrants...

Kind regards

$\chi$ $\sigma$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top