How to Solve This Trigonometric Limit as x Approaches Infinity?

  • Context: MHB 
  • Thread starter Thread starter Francolino
  • Start date Start date
  • Tags Tags
    Limit Trigonometric
Click For Summary
SUMMARY

The limit of the function $$\lim_{x \to \infty} \sin (x\pi\sqrt [3] {x^3+3x^2+4x-5})$$ does not exist. As x approaches infinity, the expression inside the sine function, $$y = \pi x\sqrt[3]{x^3 + 3x^2 + 4x - 5}$$, tends towards infinity, causing the sine function to oscillate between -1 and 1. Therefore, the limit cannot converge to a specific value. The discussion highlights that additional terms do not affect the limit as x approaches infinity.

PREREQUISITES
  • Understanding of trigonometric limits
  • Familiarity with cubic functions and their behavior at infinity
  • Knowledge of the properties of the sine function
  • Basic algebraic manipulation of limits
NEXT STEPS
  • Study the behavior of oscillating functions as limits approach infinity
  • Learn about the properties of the sine function in relation to limits
  • Explore cubic root functions and their asymptotic behavior
  • Investigate advanced limit techniques in calculus
USEFUL FOR

Students and educators in calculus, mathematicians exploring limits, and anyone interested in advanced trigonometric analysis.

Francolino
Messages
14
Reaction score
0
Hi to everyone. I'm new on here (in fact, this is my really first message). I need some help with the next limit, I hope you can help me:

$$\lim_{x \to \infty} \sin (x\pi\sqrt [3] {x^3+3x^2+4x-5})$$​

Thank you so much for your time! :)
 
Physics news on Phys.org
Francolino said:
Hi to everyone. I'm new on here (in fact, this is my really first message). I need some help with the next limit, I hope you can help me:

$$\lim_{x \to \infty} \sin (x\pi\sqrt [3] {x^3+3x^2+4x-5})$$​

Thank you so much for your time! :)

Hi Francolino,

The limit of your function does not exist. To see why, suppose it did have a limit, $L$. Let $y = \pi x\sqrt[3]{x^3 + 3x^2 + 4x - 5}$. Then $y \to \infty$ as $x \to \infty$. So (*) $L = \lim_{y \to \infty} \sin{y}$. However, as $y$ increases without bound, $\sin(y)$ oscillates between -1 and 1. Therefore, (*) cannot hold.
 
Thanks again, for answering. :)

$$\displaystyle \lim_{x \to \infty} \sin (x\pi\sqrt [3] {x^3+3x^2+4x-5} + 0) = \displaystyle \lim_{x \to \infty} \sin (x\pi\sqrt [3] {x^3+3x^2+4x-5} + [x·(x+1)·\pi - x·(x+1)·\pi])$$

As $x·(x+1)·\pi$ is always a pair number (no matter what intenger $x$ is), so:
$$\displaystyle \lim_{x \to \infty} \sin (x\pi\sqrt [3] {x^3+3x^2+4x-5} \pi -x·(x+1)·\pi) = \frac {\sqrt {3}}{2}$$

What do you think?
 
Last edited:
Francolino said:
Thanks again, for answering. :)

$$\displaystyle \lim_{x \to \infty} \sin (x\pi\sqrt [3] {x^3+3x^2+4x-5} + 0) = \displaystyle \lim_{x \to \infty} \sin (x\pi\sqrt [3] {x^3+3x^2+4x-5} + [n·(n+1)·\pi - n·(n+1)·\pi])$$

As $n·(n+1)·\pi$ is always a pair number (no matter what intenger $n$ is), so:
$$\displaystyle \lim_{x \to \infty} \sin (x\pi\sqrt [3] {x^3+3x^2+4x-5} \pi - n·(n+1)·\pi) = \frac {\sqrt {3}}{2}$$

What do you think?
It doesn't change the previous argument. Look at it this way, the limit of the cubic is essentially linear in x (after the cube root) and will swamp any terms in n, unless perhaps you take n to infinity as well. I'll leave that to the professionals. In this case though, your terms in n will not have an effect when x goes to infinity.

Writing in the "intermediate" step:

$$\displaystyle \lim_{x \to \infty } \sin \left ( x \pi \sqrt [3] {x^3+3x^2+4x-5} - n\cdot(n+1)\cdot\pi \right ) \to \lim_{x \to \infty } \sin \left ( x \pi \sqrt [3] {x^3+3x^2+4x-5} \right )$$

so your n argument doesn't actually change anything.

-Dan
 
Last edited by a moderator:
I apologize myself. I commited a mistake typing my last message. Now, the error is fixed.

Forget about $ n $. It's $ x $, now. Sorry.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K