MHB How to Translate Univariate Newton's Approximation to Multidimensional Systems?

Click For Summary
Translating univariate Newton's approximation to multidimensional systems involves understanding the structure of the equations and derivatives involved. The original poster struggles with the multidimensional equation y = F.x, where F is a coefficient matrix. They initially misinterpret the role of the derivative matrix F', leading to confusion about its invertibility. A correct approach involves recognizing that F represents a set of functions, and the derivative should be a matrix of partial derivatives, allowing for the formulation of Newton's method as x^(k+1) = x^(k) - (DF(x^(k)))^(-1) * F(x^(k)). This clarification helps in accurately applying Newton's method to multidimensional systems.
Purplepixie
Messages
7
Reaction score
0
Hello,
I am having difficulty in translating the univariate Newton's approximation {Xn = Xn-1 - [ f(Xn-1) / f'(Xn-1)]} into the multidimensional case. My multidimensional equation system is y = F.x where y and x are (nx1) column vectors and the coefficients matrix F is (nxn), so that (nx1) = (nxn).(nx1) = (nx1).

I have translated the univariate Newton's approximation to the n-variate case as:
x2 = x1 - (F.x1 / F'.x1) <=> x1 - (F.x1).Inv(F'.x1)

But F'.x1 is a nx1 column vector and has no inverse. I then thought that perhaps the x1's cancel out . But if so then we would have x2 = x1 - F.Inv(F') with the last term a nxn matrix, so (nx1) = (nx1) - (nxn), which is not possible.

Your assistance would be greatly appreciated!

(This is my first post incidentally, so pls excuse any breaches of protocol)
 
Physics news on Phys.org
Purplepixie said:
Hello,
I am having difficulty in translating the univariate Newton's approximation {Xn = Xn-1 - [ f(Xn-1) / f'(Xn-1)]} into the multidimensional case. My multidimensional equation system is y = F.x where y and x are (nx1) column vectors and the coefficients matrix F is (nxn), so that (nx1) = (nxn).(nx1) = (nx1).

I have translated the univariate Newton's approximation to the n-variate case as:
x2 = x1 - (F.x1 / F'.x1) <=> x1 - (F.x1).Inv(F'.x1)

But F'.x1 is a nx1 column vector and has no inverse. I then thought that perhaps the x1's cancel out . But if so then we would have x2 = x1 - F.Inv(F') with the last term a nxn matrix, so (nx1) = (nx1) - (nxn), which is not possible.

Your assistance would be greatly appreciated!

(This is my first post incidentally, so pls excuse any breaches of protocol)

Hi Purplepixie, welcome to MHB!

First we have to establish what $F'$ is.
If it is a matrix that does not depend on any variable, then $F'$ is the matrix that contains only zeroes.
Consequently we won't really get any useful result.

Newton's approach aims to solve $f(x)=0$, and makes use of the fact that $f(x) \approx f(x_0) + f'(x)(x-x_0) \implies x_0\approx x - \frac{1}{f'(x)}\cdot f(x)$.
We might try to solve $F(x_1,\ldots,x_n)=(0,\ldots, 0)$ in a similar fashion. In this case $F$ is not a matrix, but a set of $n$ functions. And each function has $n$ parameters.
If we take the derivative, we don't have just 1 derivative, but instead we have the derivatives of $n$ functions with respect to each of the $n$ parameters.
The result is a matrix of $n\times n$ derivatives. Let's call it $DF(x)$ to denote that it's a matrix of functions that depend on $x$.
Now we can write Newton's approximation as $x^{(k+1)} = x^{(k)} - \Big(DF(x^{(k)})\Big)^{-1}\cdot F(x^{(k)})$, where $x^{(k)}$ denote the successive approximations of $x$.
 
Dear Klaas,
Thank you for your clear and succinct explanation. I can now see where I was wrong. So much of mathematics would be simplified if representational systems could be improved!
All the best,
PP
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K