MHB How to write the quadratic function.

AI Thread Summary
To write a quadratic function with a maximum value of 4 and an axis of symmetry at x = -2, the vertex form of the function is used: y(x) = a(x - h)² + k, where the vertex is at (h, k). The vertex should be at (-2, 4) since the maximum occurs there. The coefficient 'a' must be negative to ensure the parabola opens downwards, indicating a maximum point. Thus, the function can be expressed as y(x) = -a(x + 2)² + 4, with a > 0. This formulation meets the specified criteria for the quadratic function.
mathlearn
Messages
331
Reaction score
0
Write a quadratic function y whose maximum value is 4 and the axis of symmetry of the graph is x=-2.

Suggestions?
 
Mathematics news on Phys.org
Where should the vertex be? Recall the vertex form of a quadratic may be written as:

$$y(x)=a(x-h)^2+k$$

where the vertex is at $(h,k)$. Since the quadratic is to have a maximum, what can we say about $a$?
 
MarkFL said:
Where should the vertex be? Recall the vertex form of a quadratic may be written as:

$$y(x)=a(x-h)^2+k$$

where the vertex is at $(h,k)$. Since the quadratic is to have a maximum, what can we say about $a$?

Since the quadratic is to have a maximum , 'a' should be a negative.

$$y(x)=-a(x+2)^2+4$$

Correct?
 
mathlearn said:
Since the quadratic is to have a maximum , 'a' should be a negative.

$$y(x)=-a(x+2)^2+4$$

Correct?

Yes, as long as $0<a$, then you have correctly given the family of quadratics that meet the stated criteria. :D

Alternately, you could state:

$$y(x)=a(x+2)^2+4$$ where $a<0$.
 
Thank you very much :)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
6
Views
2K
Replies
2
Views
1K
Replies
6
Views
1K
Replies
6
Views
2K
Replies
4
Views
4K
Back
Top