How would I prove this by induction?

  • Context: MHB 
  • Thread starter Thread starter tony700
  • Start date Start date
  • Tags Tags
    Induction
Click For Summary
SUMMARY

The discussion focuses on proving the identity $$\sum_{k=0}^n\frac{n!}{n^kk!(n-k)!}=\frac{(n+1)^n}{n^n}$$ using mathematical induction. The induction hypothesis is established as $$\sum_{k=0}^n\left({n \choose k}\frac{1}{n^k}\right)=\left(1+\frac{1}{n}\right)^n$$, which is a direct application of the binomial theorem. The base case is verified for n=1, confirming that the identity holds true. The next step involves determining the induction step to complete the proof.

PREREQUISITES
  • Understanding of mathematical induction
  • Familiarity with binomial coefficients and the binomial theorem
  • Basic knowledge of factorial notation and its properties
  • Ability to manipulate algebraic expressions involving summations
NEXT STEPS
  • Study the principles of mathematical induction in depth
  • Explore the binomial theorem and its applications in combinatorics
  • Learn about the properties of binomial coefficients
  • Practice proving identities using induction with various examples
USEFUL FOR

Mathematicians, educators, and students studying combinatorics or mathematical proofs, particularly those interested in induction techniques and the binomial theorem.

tony700
Messages
5
Reaction score
0
How would I prove this by induction?

$$\sum_{k=0}^n\frac{n!}{n^kk!(n-k)!}=\frac{(n+1)^n}{n^n}$$
 
Mathematics news on Phys.org
I would begin by writing the induction hypothesis as:

$$\sum_{k=0}^n\left({n \choose k}\frac{1}{n^k}\right)=\left(1+\frac{1}{n}\right)^n$$

We can see this is simply a statement of a particular case of the binomial theorem. As such, we will find the following 3 identities useful:

[box=blue]$${r \choose 0}=1\tag{1}$$

$${r \choose r}=1\tag{2}$$

$${k \choose r}+{k \choose r-1}={k+1 \choose r}\tag{3}$$

where $(k,r)\in\mathbb{N}$ and $r\le k$[/box]

So, the first thing we want to do is show the base case $P_1$ is true:

$$\sum_{k=0}^1\left({1 \choose k}\frac{1}{1^k}\right)=\left(1+\frac{1}{1}\right)^1$$

We can see this simplifies to:

$$2=2\quad\checkmark$$

So, we restate our induction hypothesis $P_n$:

$$\sum_{k=0}^n\left({n \choose k}\frac{1}{n^k}\right)=\left(1+\frac{1}{n}\right)^n$$

What do you suppose our induction step should be?
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
823
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K