Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

How would you find the equations of the asymptotes

  1. Mar 15, 2007 #1
    [tex]L_1L_2 +\lambda =0[/tex]
    [tex]S+\lambda =0[/tex] (Such that D=0)
    [tex]S+2\lambda =0[/tex]

    In case of a hyperbola, S is the pair of straight lines representing the asymptotes and [tex]\lambda[/tex] is any parameter.

    My question is, are the first two equations the same? How would you find the equations of the asymptotes if you were given the equation of the curve.

    The third equation is the conjugate hyperbola if [tex] S+\lambda =0[/tex] represents the original hyperbola. Is there any other way to find the conjugate hyperbola?

    If [tex] \frac{x^2}{a^2} - \frac{y^2}{b^2} =1[/tex] is the equation of the original hyperbola, then does the equation [tex] \frac{x^2}{a^2} - \frac{y^2}{b^2} =-1[/tex] represent the conjugate hyperbola?
  2. jcsd
  3. Mar 15, 2007 #2


    User Avatar
    Science Advisor

    I can make very little sense of this. What are L1 and L2? Are they linear functions? What is S?
  4. Mar 16, 2007 #3
    [tex]L_1 and L_2[/tex] are linear functions. S represents a pair of straight lines.
  5. Mar 17, 2007 #4
    Yes, to your very last part. I found the rest to be confusing.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook