Hrmm derivative problems (concept?)

  • Thread starter Thread starter VikingStorm
  • Start date Start date
  • Tags Tags
    Concept Derivative
Click For Summary
SUMMARY

This discussion focuses on solving derivative problems using the rules of differentiation. Participants analyze three functions: s(x) = f(x) + g(x), p(x) = f(x)g(x), and q(x) = f(x)/g(x), given specific values for f and g at x=2. The derivatives are calculated as follows: s'(2) = 7, p'(2) = 1, and q'(2) = 7. Additionally, the discussion addresses the misconception surrounding the equation (x^2-1)/(x-1) = x+1, clarifying that it is not an identity due to its failure at x=1.

PREREQUISITES
  • Understanding of basic calculus concepts, specifically derivatives.
  • Familiarity with the product and quotient rules of differentiation.
  • Knowledge of limits and their properties in calculus.
  • Ability to manipulate algebraic expressions and identify identities.
NEXT STEPS
  • Study the product rule and quotient rule in detail for differentiating complex functions.
  • Learn about limits and continuity, focusing on how they apply to rational functions.
  • Explore the concept of identities in algebra and their implications in calculus.
  • Practice solving derivative problems with varying functions and conditions.
USEFUL FOR

Students and educators in calculus, particularly those focusing on derivatives and limits, as well as anyone seeking to clarify common misconceptions in algebraic identities.

VikingStorm
I've been trying to do these concept-based questions, (but I think my concept isn't that sound).

"Suppose f'(2)=4, g'(2)=3, f(2)=-1 and g(2)=1. Find the derivative at 2 of each of the following functions
a. s(x)=f(x)+g(x)
b. p(x)=f(x)g(x)
c. q(x)=f(x)/g(x)"
I began doing this, without reading the find the derivative part. What order would I exactly solve it in? Or does it work straight in by plugging in the derivatives? (too simple, so must not be it)

"If f(x)=x, find f'(137)"
This is a pure concept question I'm sure...

"Explain what is wrong with the equation (x^2-1)/(x-1)=x+1, and why lim(x^2)/(x-1)=lim(x+1) both x->1"
The top factors out and supposedly cancels, though I'm not sure why I can't do that.
 
Physics news on Phys.org
Hello, VikingStorm!

"Suppose f'(2)=4, g'(2)=3, f(2)=-1 and g(2)=1. Find the derivative at 2 of each of the following functions
a. s(x) = f(x) + g(x)
b. p(x) = f(x)*g(x)
c. q(x) = f(x)/g(x)"

Yes , you're right ...
After finding the derivative, just plug in the given values.

(a) s'(x) = f '(x) + g'(x)
Hence: s'(2) = f'(2) + g'(2) = 4 + 3 = 7

(b) p'(x) = f(x)*g'(x) + g(x)*f '(x)
Hence: p'(2) = f(2)*g'(2) + g(2)*f '(2) = (-1)(3) + (1)(4) = 1

(c) q'(x) = [g(x)*f '(x) - f(x)*g'(x)]/[g(x)]^2
Hence: q'(2) = [(1)(4) - (-1)(3)][1^2] = 7
 
"If f(x)=x, find f'(137)"
This is a pure concept question I'm sure...

"Explain what is wrong with the equation (x^2-1)/(x-1)=x+1, and why lim(x^2)/(x-1)=lim(x+1) both x->1"
The top factors out and supposedly cancels, though I'm not sure why I can't do that.
for the first one, note that f'(x)=1 for all x, so f'(137)=1. another way to look at is is that for y=x, y=x is a tangent line at all points. the slope of the tangent line is 1 everywhere, so since f'(x) is the slope of the tangent line at (x,f(x)), f'(137)=1.

for the second question, the main thing is what is meant by the equality sign. suppose A(x) and B(x) are two algebraic expressions defined for some set such as the set of real numbers. then we say that A(x)=B(x) if and only if A(x) equals B(x) for all real numbers x. such equations like A(x)=B(x) that are true "everywhere" are called identities.

(x^2-1)/(x-1)=x+1 is *not* an identity because the equation isn't always true: it fails when x=1.

if you let A(x)=(x^2-1)/(x-1) and B(x)=x+1, note that A(x)=B(x) for all real numbers except x=1. when you take the limit as x approaches 1, x is never allowed to actually equal 1, so
limA(x)=limB(x).
 
Relativistic Momentum, Mass, and Energy Momentum and mass (...), the classic equations for conserving momentum and energy are not adequate for the analysis of high-speed collisions. (...) The momentum of a particle moving with velocity ##v## is given by $$p=\cfrac{mv}{\sqrt{1-(v^2/c^2)}}\qquad{R-10}$$ ENERGY In relativistic mechanics, as in classic mechanics, the net force on a particle is equal to the time rate of change of the momentum of the particle. Considering one-dimensional...

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
5
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K