- #1
Figaro
- 103
- 7
From Introduction to Cosmology by Matt Roos, he wanted to derive the Hubble parameter in terms of the scale factor. From the Friedmann's equation,
##\frac{R'^2 + kc^2}{R^2} = \frac{8πG}{3}ρ##
The density parameter is ##~Ω(a) = \frac{8πG}{3H_o^2}ρ(a)~## and let ##~Ω_k = \frac{-kc^2}{H_o^2}##
So, ##~H(a)^2 = H_o^2 ( Ω_k a^{-2} + Ω(a) )~~## where ##Ω(a) = Ω_m(a) + Ω_r(a) + Ω_λ(a)##
m = matter, r = radiation, k = curvature, λ = cosmological constant
It is also known that the density parameter evolves as (for example, a matter dominated universe)
##~Ω_m(a) = Ω_m \frac{H_o^2}{H^2} a^{-3}##
The expression for the Hubble parameter in terms of the scale factor is,
##~H(a)^2 = H_o^2 ( Ω_m a^{-3} + Ω_r a^{-4} + Ω_k a^{-2} + Ω_λ ) ##
But how is that possible? If I substitute the density parameters in terms of how they evolve, there will be an extra factor of ##~ \frac{H_o^2}{H^2}~##. Any comments?
##\frac{R'^2 + kc^2}{R^2} = \frac{8πG}{3}ρ##
The density parameter is ##~Ω(a) = \frac{8πG}{3H_o^2}ρ(a)~## and let ##~Ω_k = \frac{-kc^2}{H_o^2}##
So, ##~H(a)^2 = H_o^2 ( Ω_k a^{-2} + Ω(a) )~~## where ##Ω(a) = Ω_m(a) + Ω_r(a) + Ω_λ(a)##
m = matter, r = radiation, k = curvature, λ = cosmological constant
It is also known that the density parameter evolves as (for example, a matter dominated universe)
##~Ω_m(a) = Ω_m \frac{H_o^2}{H^2} a^{-3}##
The expression for the Hubble parameter in terms of the scale factor is,
##~H(a)^2 = H_o^2 ( Ω_m a^{-3} + Ω_r a^{-4} + Ω_k a^{-2} + Ω_λ ) ##
But how is that possible? If I substitute the density parameters in terms of how they evolve, there will be an extra factor of ##~ \frac{H_o^2}{H^2}~##. Any comments?