Huh? Condensates can exchange particles without effect?

Click For Summary
SUMMARY

The discussion centers on the concept that particles, specifically fermions, can exchange bosons within a Bose-Einstein condensate (BEC) without altering the energy of the condensate. It is established that when a virtual photon or z-boson is absorbed by a BEC, the total energy remains unchanged due to the indistinguishable nature of the particles involved. The mathematical framework supporting this includes the energy density equations for both relativistic and non-relativistic ideal Bose gases, where the energy density is defined as ##\epsilon = m n_c## for relativistic cases and is zero for non-relativistic cases. The discussion highlights the thermodynamic limit where total energy becomes undefined, emphasizing the importance of particle density over total energy.

PREREQUISITES
  • Understanding of Bose-Einstein condensates (BEC)
  • Familiarity with particle physics concepts, specifically fermions and bosons
  • Knowledge of thermodynamic limits in statistical mechanics
  • Proficiency in relativistic and non-relativistic energy equations
NEXT STEPS
  • Study the principles of Bose-Einstein condensation in detail
  • Learn about the role of virtual particles in quantum field theory
  • Explore the thermodynamic limit and its implications in statistical mechanics
  • Investigate the differences between relativistic and non-relativistic particle energy equations
USEFUL FOR

Physicists, particularly those specializing in quantum mechanics and statistical mechanics, as well as researchers exploring particle interactions within Bose-Einstein condensates.

jshrager
Gold Member
Messages
24
Reaction score
1
I have now seen it repeated multiple times that a particle (a fermion, perhaps?) moving in a condensate can exchange particles (bosons, most probably) "without effect" -- the version of this that I run into usually goes something like that the energy of the condensate does not change AT ALL when, say, a virtual photon (or z-boson) is absorbed into a BEC. Now, first off, hunh? Does this really mean that the energy of the condensate doesn't change when something is absorbed by it? How can that be? And if so, what aspect of what equation(s) tell us this? One possible way that I can resolve this apparent impossibility is that to require that the emitting particle be a part of the condensate to begin with, so that the absorption is balanced by the emission, but this doesn't seem to be what is being said.
 
Physics news on Phys.org
One usually assumes that the condensate is infinitely large, so its total energy is infinite or at least undefined anyhow.
 
If you go into the thermodynamical limit ##V \rightarrow \infty##, total energy, total particle number etc. get undefined, and only the corresponding densities make sense. You also must say, whether you look at relativistic particles, where energy is usually defined as including the rest-mass contribution, ##E=\sqrt{m^2+p^2}## (setting ##c=\hbar=1##), or a non-relativistic gas.

For an ideal relativistic Bose gas you have
$$f(\vec{p})=(2 \pi)^3 n_c \delta^{(3)}(\vec{p})+\frac{1}{\exp[(E(\vec{p})-m)/T]-1},$$
where ##n_c## is the particle-number density of the particles in the condensate, ##m## the mass of the particles and (in the thermodynamic limit) ##\mu=m##.

For the energy density, it follows
$$\epsilon=\int_{\mathbb{R}^3} \frac{\mathrm{d}^3 \vec{p}}{(2 \pi)^3} E(\vec{p}) f(\vec{p})=m n_c + \int_{\mathbb{R}^3} \frac{\mathrm{d}^3 \vec{p}}{(2 \pi)^3} E(\vec{p}) \frac{1}{\exp[(E(\vec{p})-m)/T]-1}.$$
Thus, for a relativistic gas, the energy density for the particles in the condensate is ##n_c m##.

The calculation is the same for a non-relativistic ideal Bose gas. The only difference is that one doesn't include the rest-mass energy in the energy but uses kinetic energy ##E(\vec{p})=\vec{p}^2/(2m)##, and then (in the thermodynamic limit) you have ##\mu=0## and thus
$$f(\vec{p})=(2 \pi)^3 n_c \delta^{(3)}(\vec{p}) + \frac{1}{\exp[E(\vec{p})/T]-1},$$
and the energy density of the condensate particles is 0.

Concerning the question in the OP, I don't know, what it means. Of course interchanging a particle within the BEC doesn't change anything, because all these particles are completely indistinguishable. I don't get the idea about a fermion exchanged with a boson at all. Of course, you can consider mixtures of fermions with bosons, where the bosons can be in a condensate, but I can't make sense about the question also in this context.
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K