I I have a question about gravity -- If the value of the energy momentum tensor (Tμν) becomes zero, can it become gravitational-free?

Click For Summary
If the energy momentum tensor (Tμν) is zero everywhere, it indicates a gravitational-free state, akin to a vacuum solution in general relativity. However, this does not imply the presence of anti-gravity; it simply represents empty space without mass or energy. The discussion draws parallels to electromagnetism, where a field exists due to a charge, but in the absence of energy momentum, no gravitational effects are present. The Schwarzschild black hole geometry exemplifies this, as it describes a vacuum solution with no stress-energy but still possesses a singularity. Ultimately, a zero Tμν signifies a lack of gravitational influence rather than an anti-gravitational effect.
seonjunyoo
Messages
5
Reaction score
1
R μν − 1/2g μν R= 8πG/c^4T μν

In this formula, if the value of the energy momentum tensor(Tμν) becomes zero, can it become gravitational-free?
 
Physics news on Phys.org
seonjunyoo said:
R μν − 1/2g μν R= 8πG/c^4T μν

In this formula, if the value of the energy momentum tensor(Tμν) becomes zero, can it become gravitational-free?
Only if it's zero everywhere. Think of electromagnetism. This is an EM field everywhere caused by a single charge.
 
PS also, in the Schwartzschild black hole geometry, there is no stress-energy. It's a vacuum solution. There is however a characteristic mass and a singularity.
 
PeroK said:
Only if it's zero everywhere. Think of electromagnetism. This is an EM field everywhere caused by a single charge.
Then, if the energy momentum tensor everywhere is zero, is it possible to assume that it is anti-gravity?
 
seonjunyoo said:
Then, if the energy momentum tensor everywhere is zero, is it possible to assume that it is anti-gravity?
No, that's just empty space.
 
  • Like
Likes Vanadium 50 and PeroK
The Poynting vector is a definition, that is supposed to represent the energy flow at each point. Unfortunately, the only observable effect caused by the Poynting vector is through the energy variation in a volume subject to an energy flux through its surface, that is, the Poynting theorem. As a curl could be added to the Poynting vector without changing the Poynting theorem, it can not be decided by EM only that this should be the actual flow of energy at each point. Feynman, commenting...