I I have a question about gravity -- If the value of the energy momentum tensor (Tμν) becomes zero, can it become gravitational-free?

seonjunyoo
Messages
5
Reaction score
1
R μν − 1/2g μν R= 8πG/c^4T μν

In this formula, if the value of the energy momentum tensor(Tμν) becomes zero, can it become gravitational-free?
 
Physics news on Phys.org
seonjunyoo said:
R μν − 1/2g μν R= 8πG/c^4T μν

In this formula, if the value of the energy momentum tensor(Tμν) becomes zero, can it become gravitational-free?
Only if it's zero everywhere. Think of electromagnetism. This is an EM field everywhere caused by a single charge.
 
PS also, in the Schwartzschild black hole geometry, there is no stress-energy. It's a vacuum solution. There is however a characteristic mass and a singularity.
 
PeroK said:
Only if it's zero everywhere. Think of electromagnetism. This is an EM field everywhere caused by a single charge.
Then, if the energy momentum tensor everywhere is zero, is it possible to assume that it is anti-gravity?
 
seonjunyoo said:
Then, if the energy momentum tensor everywhere is zero, is it possible to assume that it is anti-gravity?
No, that's just empty space.
 
  • Like
Likes Vanadium 50 and PeroK
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
Back
Top