I I have a question about gravity -- If the value of the energy momentum tensor (Tμν) becomes zero, can it become gravitational-free?

seonjunyoo
Messages
5
Reaction score
1
R μν − 1/2g μν R= 8πG/c^4T μν

In this formula, if the value of the energy momentum tensor(Tμν) becomes zero, can it become gravitational-free?
 
Physics news on Phys.org
seonjunyoo said:
R μν − 1/2g μν R= 8πG/c^4T μν

In this formula, if the value of the energy momentum tensor(Tμν) becomes zero, can it become gravitational-free?
Only if it's zero everywhere. Think of electromagnetism. This is an EM field everywhere caused by a single charge.
 
PS also, in the Schwartzschild black hole geometry, there is no stress-energy. It's a vacuum solution. There is however a characteristic mass and a singularity.
 
PeroK said:
Only if it's zero everywhere. Think of electromagnetism. This is an EM field everywhere caused by a single charge.
Then, if the energy momentum tensor everywhere is zero, is it possible to assume that it is anti-gravity?
 
seonjunyoo said:
Then, if the energy momentum tensor everywhere is zero, is it possible to assume that it is anti-gravity?
No, that's just empty space.
 
  • Like
Likes Vanadium 50 and PeroK
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
Thread 'Dirac's integral for the energy-momentum of the gravitational field'
See Dirac's brief treatment of the energy-momentum pseudo-tensor in the attached picture. Dirac is presumably integrating eq. (31.2) over the 4D "hypercylinder" defined by ##T_1 \le x^0 \le T_2## and ##\mathbf{|x|} \le R##, where ##R## is sufficiently large to include all the matter-energy fields in the system. Then \begin{align} 0 &= \int_V \left[ ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g}\, \right]_{,\nu} d^4 x = \int_{\partial V} ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g} \, dS_\nu \nonumber\\ &= \left(...
Back
Top