Identity permutation as product of even number of 2-cycles

Click For Summary

Homework Help Overview

The discussion revolves around proving that the identity permutation can be expressed as a product of an even number of 2-cycles. The original poster references a textbook (Gallian) and presents a scenario where they analyze the implications of the number of transpositions involved in forming the identity.

Discussion Character

  • Exploratory, Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants explore the conditions under which the identity can be represented as a product of 2-cycles, questioning the limitations on the types of transpositions that can be used. There is also discussion about the implications of the number of transpositions being even and the reasoning behind specific cases presented in the textbook.

Discussion Status

Some participants express confusion regarding the constraints on the transpositions and seek clarification on the reasoning behind the limited forms of transpositions. Others provide insights into the nature of the problem and the implications of the findings, suggesting that the discussion is productive and moving towards a clearer understanding of the topic.

Contextual Notes

There is an ongoing examination of the assumptions made in the problem, particularly regarding the nature of the transpositions and their relationship to the identity permutation. Participants are also considering the implications of the proof structure as presented in the textbook.

Kaguro
Messages
221
Reaction score
57
Homework Statement
Prove that the identity permutation can be written as ##\beta_1 \beta_2...\beta_{r-1} \beta_r## where ##\beta## are 2-cycles and r is even.
Relevant Equations
None
The book I'm following (Gallian) basically says:

r can't be 1 since then it won't map all elements to themselves.

If r=2, then it's already even, nothing else to do.

If r>2,
Then consider the last two factors: ##\beta_{r-1} \beta_r##.
Let the last one be (ab).

Since the order of elements inside a two cycle is irrelevant (xy)=(yx), all possible ways to write the last two factors are:

(ab)(ab)
(ac)(ab)
(bc)(ab)
(cd)(ab)

Why?!

What happened to the other ones like : (ad)(ab) and (bd)(ab) ?
 
Physics news on Phys.org
Kaguro said:
Homework Statement:: Prove that the identity permutation can be written as ##\beta_1 \beta_2...\beta_{r-1} \beta_r## where ##\beta## are 2-cycles and r is even.
Relevant Equations:: None

The book I'm following (Gallian) basically says:
r can't be 1 since then it won't map all elements to themselves.
If r=2, then it's already even, nothing else to do.
If r>2,
Then consider the last two factors: ##\beta_{r-1} \beta_r##.
Let the last one be (ab).
Since the order of elements inside a two cycle is irrelevant (xy)=(yx), all possible ways to write the last two factors are:
(ab)(ab)
(ac)(ab)
(bc)(ab)
(cd)(ab)

Why?!

What happened to the other ones like : (ad)(ab) and (bd)(ab) ?
I don't understand the problem. Are you sure you translated it correctly? You can always write ##1=\prod_{k=1}^ng_k \cdot \left(\prod_{k=1}^ng_k\right)^{-1} ## in any group. Here e.g. ##(1)=\ldots (ef)(cd)(ab)(ab)(cd)(ef)\ldots##
 
Kaguro said:
Check this one:
https://math.stackexchange.com/ques...itten-as-the-product-of-r-transpositions-then

All the answers mention that if (ab) is the last element then there can be only 4 types of transpositions possible for the second last element.
Maybe, but you said: "if ... then can be written as ... " and I gave the answer that this is always trivially the case:
$$
1 = g_n (g_{n-1}(g_{n-2}(\ldots (g_3(g_2(g_1g_1^{-1})g_2^{-1})g_3^{-1}) \ldots )g_{n-2}^{-1})g_{n-1}^{-1})g_n^{-1}
$$
##2n## elements whose product is ##1## - in any group.
 
  • Like
Likes   Reactions: Kaguro
See the proof from Gallian textbook:

Clearly, r ##\neq 1##, since a 2-cycle is not the identity. If r = 2, we
are done. So, we suppose that r > 2, and we proceed by induction.Suppose that the rightmost 2-cycle is (ab). Then, since (ij) = ( ji), the product ##\beta_{r-1} \beta_r## can be expressed in one of the following forms shown on the right:
e= (ab)(ab),
(ab)(bc) = (ac)(ab),
(ac)(cb) = (bc)(ab),
(ab)(cd) = (cd)(ab).

If the first case occurs, we may delete ##\beta_{r-1} \beta_r ## from the original product
to obtain ##\epsilon =\beta_1 \beta_2 ... \beta_{r-2}##, and therefore, by the Second Principle of
Mathematical Induction, r -2 is even. In the other three cases, we replace the form of ##\beta_{r-1} \beta_r## on the right by its counterpart on the left to obtain a new product of r 2-cycles that is still the identity, but where the rightmost occurrence of the integer a is in the second-from-the-rightmost 2-cycle of the product instead of the rightmost 2-cycle.

We now repeat the procedure just described with ##\beta_{r-2} \beta_{r-1}##, and, as before, we
obtain a product of (r - 2) 2-cycles equal to the identity or a new product of r 2-cycles, where the rightmost occurrence of a is in the third 2-cycle from the right. Continuing this process, we must obtain a product of
(r - 2) 2-cycles equal to the identity, because otherwise we have a product equal to the identity in which the only occurrence of the integer a is in the leftmost 2-cycle, and such a product does not fix a, whereas the identity does. Hence, by the Second Principle of Mathematical Induction, r - 2 is even, and r is even as well.
 
I don't understand how can the author say only these are the possible elements..

Can you help me?
 
fresh_42 said:
Maybe, but you said: "if ... then can be written as ... " and I gave the answer that this is always trivially the case:
$$
1 = g_n (g_{n-1}(g_{n-2}(\ldots (g_3(g_2(g_1g_1^{-1})g_2^{-1})g_3^{-1}) \ldots )g_{n-2}^{-1})g_{n-1}^{-1})g_n^{-1}
$$
##2n## elements whose product is ##1## - in any group.
Yes. I see this is obviously one way to write the identity. I'm trying to see why every possible identity has to be a product of even number of 2-cycles?
 
Firstly, I think the statement which is proven is another than you wrote it is. It says:

If we have a product of length ##r## of transpositions which multiply to the identity, then ##r## is necessarily even.

It doesn't say there is such a representation, it says if there is such a representation, then its length is even. It is a step towards the theorem that the sign function is a group homomorphism ##\varphi \, : \,\operatorname{Sym}(n) \longrightarrow \{\pm 1\}\, , \,\varphi (\sigma )=(-1)^r##.

Secondly, that there are only four possibilities is a simple observation: Given ##(ab)## as last transposition on the right, and having another transposition ##(xy)## on the left of it, then there are obviously four possibilities:
##\{a,b\}\cap\{x,y\}=\{a,b\}\, , \,\{a,b\}\cap\{x,y\}=\{a\}\, , \,\{a,b\}\cap\{x,y\}=\{b\}\, , \,\{a,b\}\cap\{x,y\}=\emptyset ##. These are all possible constellations for the numbers ##x,y.##
 
  • Like
Likes   Reactions: Kaguro
fresh_42 said:
Secondly, that there are only four possibilities is a simple observation: Given ##(ab)## as last transposition on the right, and having another transposition ##(xy)## on the left of it, then there are obviously four possibilities:
##\{a,b\}\cap\{x,y\}=\{a,b\}\, , \,\{a,b\}\cap\{x,y\}=\{a\}\, , \,\{a,b\}\cap\{x,y\}=\{b\}\, , \,\{a,b\}\cap\{x,y\}=\emptyset ##. These are all possible constellations for the numbers ##x,y.##
... Oh.

Didn't think of it like that.. So c and d are just placeholders for any number which is not a and b. So (bc) and (bd) are equivalent. And (ac) and (ad) are equivalent...

Right... I'm an idiot.
 
  • #10
Thank you very much! Now I can progress.:biggrin:
 

Similar threads

Replies
8
Views
5K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K