MHB If Derivative is Not Zero Anywhere Then Function is Injective.

caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Hello MHB.

I am sorry that I haven't been able to take part in discussions lately because I have been really busy.

I am having trouble with a question.

In a past year paper of an exam I am preparing for it read:

Let $f: (a,b)\to \mathbb R$ be a differentiable function with $f'(x)\neq 0$ for all $x\in(a,b)$. Then is $f$ necessarily injective?

I know that a function can be differentiable at all points and have a discontinuous derivative.
This makes me think that $f$ is not necessarily injective. But I am not able to construct a counterexample.

Can anybody help?
 
Physics news on Phys.org
caffeinemachine said:
I know that a function can be differentiable at all points and have a discontinuous derivative.

It can? Can you come up with an example of a function that does this? For me, I think of $f(x)=|x|$. It is not differentiable at $0$; its derivative is discontinuous at the origin.
 
caffeinemachine said:
Hello MHB.

I am sorry that I haven't been able to take part in discussions lately because I have been really busy.

I am having trouble with a question.

In a past year paper of an exam I am preparing for it read:

Let $f: (a,b)\to \mathbb R$ be a differentiable function with $f'(x)\neq 0$ for all $x\in(a,b)$. Then is $f$ necessarily injective?

I know that a function can be differentiable at all points and have a discontinuous derivative.
This makes me think that $f$ is not necessarily injective. But I am not able to construct a counterexample.

Can anybody help?
Rolle's theorem.
 
Ackbach said:
It can? Can you come up with an example of a function that does this? For me, I think of $f(x)=|x|$. It is not differentiable at $0$; its derivative is discontinuous at the origin.
calculus - Discontinuous derivative. - Mathematics Stack Exchange
See Mark McClure's answer. He provides such an example.
Also see Haskell Curry's answer. He doesn't provide an example but his post is useful.
 
Another result of interest, which I found here: the Darboux theorem. If a function is differentiable, then its derivative must satisfy the Intermediate Value property.
 
Let us suppose by way of contradiction a counter-example exists.

Thus we have two points $c < d \in (a,b)$ such that:

$f(c) = f(d)$, but $c \neq d$.

By supposition, $c$ and $d$ are, of course, interior points of $(a,b)$, and thus since $f$ is differentiable on $(a,b)$, $f$ is continuous on $[c,d]$ and differentiable on $(c,d)$.

Hence we may apply the mean value theorem to deduce there exists a point $x_1 \in (c,d)$ such that:

$f'(x_1) = \dfrac{f(d) - f(c)}{d - c} = 0$

violating the condition $f'(x) \neq 0$ for all $x \in (a,b)$.

Thus no such pair exists, which thus means if for $c,d \in (a,b), f(c) = f(d)$, we must have $c = d$, that is, $f$ is injective.

(Note this proof takes advantage of the trichotomy rule, a consequence of the order properties of $\Bbb R$).
 
Back
Top