- #1
GRDixon
- 249
- 0
Imagine a solid, non-conducting cylinder at rest in IRF K, with a positive spherical charge centered on one end and a negative spherical charge on the other end. Each charge experiences an electric force toward the other. The cylinder is compressed, but there is no torque.
Let us say that the cylinder’s axis makes an angle, A, with the x-axis, such that 0<A<90 degrees. Viewed from frame K’, each charge experiences a net electromagnetic (Lorentz) force that does not point along the cylinder’s axis. Together the charges exert a nonzero torque about the cylinder’s midpoint. Yet in K’ (as in K) the cylinder does not rotate. What counteracts the Lorentz torque in K’?
Bonus question: why don’t the charges slide/roll off the cylinder ends in K’?
Let us say that the cylinder’s axis makes an angle, A, with the x-axis, such that 0<A<90 degrees. Viewed from frame K’, each charge experiences a net electromagnetic (Lorentz) force that does not point along the cylinder’s axis. Together the charges exert a nonzero torque about the cylinder’s midpoint. Yet in K’ (as in K) the cylinder does not rotate. What counteracts the Lorentz torque in K’?
Bonus question: why don’t the charges slide/roll off the cylinder ends in K’?